fitbenchmarking.controllers.scipy_go_controller module

Implements a controller for the scipy fitting software. In particular, here for the scipy minimize solver for general minimization problems.

class fitbenchmarking.controllers.scipy_go_controller.ScipyGOController(cost_func)

Bases: fitbenchmarking.controllers.base_controller.Controller

Controller for the Scipy fitting software.

algorithm_check = {'all': ['differential_evolution', 'shgo', 'dual_annealing'], 'bfgs': [], 'conjugate_gradient': [], 'deriv_free': ['differential_evolution'], 'gauss_newton': [], 'general': ['differential_evolution', 'shgo', 'dual_annealing'], 'global_optimization': ['differential_evolution', 'shgo', 'dual_annealing'], 'levenberg-marquardt': [], 'ls': [None], 'simplex': [], 'steepest_descent': [], 'trust_region': []}

Within the controller class, you must initialize a dictionary, algorithm_check, such that the keys are given by:

  • all - all minimizers

  • ls - least-squares fitting algorithms

  • deriv_free - derivative free algorithms (these are algorithms that cannot use information about derivatives – e.g., the Simplex method in Mantid)

  • general - minimizers which solve a generic min f(x)

  • simplex - derivative free simplex based algorithms e.g. Nelder-Mead

  • trust_region - algorithms which emply a trust region approach

  • levenberg-marquardt - minimizers that use the Levenberg-Marquardt algorithm

  • gauss_newton - minimizers that use the Gauss Newton algorithm

  • bfgs - minimizers that use the BFGS algorithm

  • conjugate_gradient - Conjugate Gradient algorithms

  • steepest_descent - Steepest Descent algorithms

  • global_optimization - Global Optimization algorithms

The values of the dictionary are given as a list of minimizers for that specific controller that fit into each of the above categories. See for example the GSL controller.


Convert the result to a numpy array and populate the variables results will be read from.

controller_name = 'scipy_go'

A name to be used in tables. If this is set to None it will be inferred from the class name.


Run problem with Scipy GO.

jacobian_enabled_solvers = ['shgo', 'dual_annealing']

Within the controller class, you must define the list jacobian_enabled_solvers if any of the minimizers for the specific software are able to use jacobian information.

  • jacobian_enabled_solvers: a list of minimizers in a specific

software that allow Jacobian information to be passed into the fitting algorithm


Setup problem ready to be run with SciPy GO