fitbenchmarking.controllers.dfo_controller module

Implements a controller for DFO-GN http://people.maths.ox.ac.uk/robertsl/dfogn/

class fitbenchmarking.controllers.dfo_controller.DFOController(cost_func)

Bases: fitbenchmarking.controllers.base_controller.Controller

Controller for the DFO-{GN/LS} fitting software.

algorithm_check = {'all': ['dfogn', 'dfols'], 'bfgs': [], 'conjugate_gradient': [], 'deriv_free': ['dfogn', 'dfols'], 'gauss_newton': ['dfogn'], 'general': [], 'global_optimization': [], 'levenberg-marquardt': [], 'ls': ['dfogn', 'dfols'], 'simplex': [], 'steepest_descent': [], 'trust_region': ['dfols', 'dfogn']}

Within the controller class, you must initialize a dictionary, algorithm_check, such that the keys are given by:

  • all - all minimizers

  • ls - least-squares fitting algorithms

  • deriv_free - derivative free algorithms (these are algorithms that cannot use information about derivatives – e.g., the Simplex method in Mantid)

  • general - minimizers which solve a generic min f(x)

  • simplex - derivative free simplex based algorithms e.g. Nelder-Mead

  • trust_region - algorithms which emply a trust region approach

  • levenberg-marquardt - minimizers that use the Levenberg-Marquardt algorithm

  • gauss_newton - minimizers that use the Gauss Newton algorithm

  • bfgs - minimizers that use the BFGS algorithm

  • conjugate_gradient - Conjugate Gradient algorithms

  • steepest_descent - Steepest Descent algorithms

  • global_optimization - Global Optimization algorithms

The values of the dictionary are given as a list of minimizers for that specific controller that fit into each of the above categories. See for example the GSL controller.

cleanup()

Convert the result to a numpy array and populate the variables results will be read from.

fit()

Run problem with DFO.

setup()

Setup for DFO