FitBenchmarking Documentation
Release 0.1.dev1

STFC

Jul 21, 2023

CONTENTS

1 FitBenchmarking 3

[.1 Table Of Contents ittt e 3
Bibliography 175
Python Module Index 177

Index 179

FitBenchmarking Documentation, Release 0.1.dev1

CONTENTS 1

https://github.com/fitbenchmarking/fitbenchmarking/actions/workflows/release.yml?query=branch%3Av1.0.0-rc1
https://github.com/fitbenchmarking/fitbenchmarking/actions/workflows/main.yml?query=branch%3Av1.0.0-rc1
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1
https://coveralls.io/github/fitbenchmarking/fitbenchmarking
https://slack.com/
https://doi.org/10.5281/zenodo.6597790
https://doi.org/10.21105/joss.03127

FitBenchmarking Documentation, Release 0.1.dev1

2 CONTENTS

CHAPTER
ONE

FITBENCHMARKING

FitBenchmarking is an open source tool for comparing different minimizers/fitting frameworks. FitBenchmarking is
cross platform and we support Windows, Linux and Mac OS. For questions, feature requests or any other inquiries,
please open an issue on GitHub, or send us an e-mail at support@fitbenchmarking.com.

¢ Installation Instructions: https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/install_instructions/
index.html

* User Documentation & Example Usage: https:/fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/index.
html

e Community Guidelines: https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/contributors/guidelines.html

* Automated Tests: Run via GitHub Actions, https://github.com/fitbenchmarking/fitbenchmarking/actions, and
tests are documented at https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/tests.html

The package is the result of a collaboration between STFC’s Scientific Computing Department and ISIS Neutron and
Muon Facility and the Diamond Light Source. We also would like to acknowledge support from:

» EU SINE2020 WP-10, which received funding from the European Union’s Horizon2020 research and innovation
programme under grant agreement No 654000.

* EPSRC Grant EP/M025179/1 Least Squares: Fit for the Future.

* The Ada Lovelace Centre (ALC). ALC is an integrated, cross-disciplinary data intensive science centre, for
better exploitation of research carried out at our large scale National Facilities including the Diamond Light
Source (DLS), the ISIS Neutron and Muon Facility, the Central Laser Facility (CLF) and the Culham Centre for
Fusion Energy (CCFE).

1.1 Table Of Contents

1.1.1 FitBenchmarking Concept Documentation

Here we outline why we built the fitbenchmarking software, and how the software benchmarks minimizers with the
goal of highlighting the best tool for different types of data.

mailto:support@fitbenchmarking.com
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/install_instructions/index.html
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/install_instructions/index.html
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/index.html
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/index.html
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/contributors/guidelines.html
https://github.com/fitbenchmarking/fitbenchmarking/actions
https://fitbenchmarking.readthedocs.io/en/v1.0.0-rc1/users/tests.html

FitBenchmarking Documentation, Release 0.1.dev1

Why is FitBenchmarking important?

Fitting a mathematical model to data is a fundamental task across all scientific disciplines. (At least) three groups of
people have an interest in fitting software:

* Scientists, who want to know what is the best algorithm for fitting their model to data they might encounter, on
their specific hardware;

* Scientific software developers, who want to know what is the state-of-the-art in fitting algorithms and imple-
mentations, what they should recommend as their default solver, and if they should implement a new method in
their software; and

* Mathematicians and numerical software developers, who want to understand the types of problems on which
current algorithms do not perform well, and to have a route to expose newly developed methods to users.

Representatives of each of these communities have got together to build FitBenchmarking. We hope this tool will help
foster fruitful interactions and collaborations across the disciplines.

Example workflow

The black crosses on the plot below are data obtained from an experiment at the VESUVIO beamline at ISIS Neutron
and Muon source:

EVS514188-90 processed Gaussian peaks 11

»x Data
Starting Guess

0.15 A

0.10 ~
&
=
=

2 0.05-
=
£
<

0.00 A

—0.05 -

T T T T T
0.0001 0.0002 0.0003 0.0004 0.0005
Time (us)

Fig. 1: VESUVIO experiment data

4 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

The scientist needs to interpret this data, and will typically use a data analysis package to help with this. Such packages
are written by specialist scientific software developers, who are experts in analysing the kind of data produced by a
given experiment; examples include Mantid, SasView, and Horace.

These packages include mathematical models, which depend on parameters, that can describe the data. We need to
find values for the parameters in these models which best fit the data — for more background, see this Wikipedia article.
The usual way this is done is by finding parameters that minimize the (weighted) squares of the error in the data, or
x? value. This is equivalent to formulating a nonlinear least-squares problem; specifically, given n data points (z;, ;)
(the crosses in the figure above), together with estimates of the errors on the values of y;, o;, we solve

AN 2
B = argmﬁing (yz — J:f’ xl)))

x2(B)

where f(3; x) is the model we’re trying to fit, and 3 are the parameters we’re trying to find.

Usually the scientist will supply a starting guess, 3, (the pink curve in the graph above), which describes where they
think the solution might be. She then has to choose which algorithm to use to fit the curve from the selection available
in the analysis software. Different algorithms may be more or less suited to a problem, depending on factors such as
the architecture of the machine, the availability of first and second derivatives, the amount of data, the type of model
used, etc.

Below we show the data overlayed by a blue curve, which is a model fitted using the implementation of the Levenberg-
Marquardt algorithm from the GNU Scientific Library (lmsder). The algorithm claims to have found a local minimum
with a Chi-squared error of 0.4771 in 1.9 seconds.

We also solved the nonlinear least squares problem using GSL’s implementation of a Nelder-Mead simplex algorithm
(nmsimplex2), which again claimed to solve the problem, this time in a faster 1.5 seconds. However, this time the
Chi-squared error was 0.8505, and we plot the curve obtained in green below. The previous curve is in dotted-blue, for
comparison.

By eye it is clear that the solution given by 1msder is better. As the volume of data increases, and we do more and more
data analysis algorithmically, it is increasingly important that we have the best algorithm without needing to check it
by eye.

FitBenchmarking will help the scientist make an informed choice by comparing runtime and accuracy of all available
minimizers, on their specific hardware, on problems from their science area, which will ensure they are using the most
appropriate minimizer.

FitBenchmarking will help the scientific software developer ensure that the most robust and quickest algorithms for
the type of data analysis they support are available in their software.

FitBenchmarking will help mathematicians see what the state of the art is, and what kinds of data are problematic. It
will give them access to real data, and will give a route for novel methods to quickly make it into production.

A workflow as described above plays a crucial role in the processing and analysis of data at large research facilities
in tasks as diverse as instrument calibration, refinement of structures, and data analysis methods specific to different
scientific techniques. FitBenchmarking will ensure that, across all areas that utilise least-squares fitting, scientists can
be confident they are using the best tool for the job.

We discuss the specific FitBenchmarking paradigm in the Section How does FitBenchmarking work?

1.1. Table Of Contents 5

https://mantidproject.org/
https://www.sasview.org
https://horace.isis.rl.ac.uk
https://en.wikipedia.org/wiki/Goodness_of_fit

FitBenchmarking Documentation, Release 0.1.dev1

EVS514188-90 processed Gaussian peaks 11

x Data

me Best Fit (Imsder)
0.15 - A

0.10 -
2
=
=
2 0.05-
=
£
<L
0.00 -
~0.05 -

T T T T
0.0002 0.0003 0.0004 0.0005
Time (us)

Fig. 2: GSL’s 1msder (Levenberg-Marquardt) algorithm on the data

6 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

EVS514188-90 processed Gaussian peaks 11

x Data
= = = Best Fit (Imsder)
0.15 - i
nmsimplex2
a1 %
X
0.10 - é
8 ?
=
=} .
2 0.05- o
= P
£ -
=
0.00 -
—0.05 4
T T T T T
0.0001 0.0002 0.0003 0.0004 0.0005
Time (us)
Fig. 3: GSL's nmsimplex2 (Nelder-Mead Simplex) algorithm on the data
1.1. Table Of Contents

FitBenchmarking Documentation, Release 0.1.dev1

How does FitBenchmarking work?

FitBenchmarking takes data and models from real world applications and data analysis packages. It fits the data to the
models by casting them as a nonlinear least-squares problem. We fit the data using a range of data fitting and nonlinear
optimization software, and present comparisons on the accuracy and timings.

MANTID

@‘ SciPy

&

nag i DFO-GN/LS A

Science and .
Eg et RALFIt

The Benchmarking Paradigm

FitBenchmarking can compare against any of the supported minmizers listed in Minimizer Options. We’ve also made it
straightforward to add new software by following the instructions in Adding Fitting Software — the software just needs
to be callable from Python.

Once you have chosen which minimizers you want to compare for a given problem, running FitBenchmarking will give
you a comparison to indicate the minimizer that performs best.

There are a number of options that you can pick to customize what your tests are comparing, or how they are run. A
full list of these options, and how to select them, is given in the section FitBenchmarking Options.

FitBenchmarking creates tables, as given in the section FitBenchmarking Output, which show a comparison between
the different minimizers available. An example of a table is:

This is the result of FitBenchmarking for a selection of software/minimizers and different problem definition types
supported in FitBenchmarking. Both the raw chi squared values, and the values normalised with respect to the best
minimizer per problem, are given. The problem names link to html pages that display plots of the data and the fit that
was performed, together with initial and final values of the parameters. Here is an example of the final plot fit:

8 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

WeightedNLLSCostFunc

scipy scipy-ls
BFGS: scipy 2- L-BFGS-B: scipy 2- Newton-CG: scipy 2- SLSQP: scipy 2- dogbox: scipy 2- | Im-scipy: scipy 2- | trf:scipy 2-
.w CG: scipy 2-point . Py Nelder-Mead . i Powell .Fy TNC: scipy 2-point < . i Py_ w Apy
point point point point point point point
ENSO, Start 1
ENSO, Start 2

Gauss3, Start 1

O
Gauss3, Start 2 _ 1911 (2.494)"

Hahn1, start 1 fIGEEEESE 5.683 (24.68)! 3.333 (14.48) 4.987 (21.66)" 1136 (4933) 3.836 (16.66) 3356 (1.458e+04) 278.8 (1211) 2.941(12.78) 6.217(27)

1.07e+05 1.07e+05
Hahn1, Start 2 PXEER(EN 29.34 (122.5)' 1.07e+05 (4.648e+057 6.284 (27.3) 3356 (1.457e+04)
(4.648e+05)2 (5.648e+05)

Kirby2, Start 1 5878 (2143 49.7 (1812) _ssm (321.4) _7307 (2664)
Kirby2, Start 2 3057 (1115)1 30.44 (111) _72:43 (26.38) _4045 (14752

Lanczos1, Start ks LoV 1305e-05 0.0009938 0.0001257 8.976e-06
1.383e-05 (9:169e+19) 0.007201 (4.773e+22)? 0.06269 (4156e+23) 7.709e-05 (511e+20)
(2.201e+17) (8.652e+19) (6.587e+21) (833e+20) (5.95e+19)

Lanczos1, Startjclazl iy 9.664e-07 1.425e-05 1.045e-05 1.485e-05 1.405e-05
1.371e-05 (9.094e+19) 0.005256 (3.487e+22)
(6.411e+18) (9.45e+19)! (6.934e+19) (9.851e+19) (9.322e+19)

Lanczosz, Start 1.333e-05 0.0009937 0.06269 0.0001254 1398e-05
k 1.373e-05 (6.275e+05) 01435 (6.556e+09)2
1 (6.091e+05) (4.54e+07) 2.865e+09) (5.732e+06) (6.387e+05)

Lanczos2, Startkki 1.425€-05 1.058e-05 1.418e-05 1.437e-05
1.69e-06 (7.72e+04) 1.375e-05 (6.28e+05) inf (inf3
(1.494e+04) (6.51e:05)! (4.832e4+05) (6.478e+05) (6.564e+05)

[N VRS EN &0 1.623 (2.222e+04) 1497 (2.049e+04) 1.497 (2.049e+04) 1.497 (2.069e+04) 1497 (2.049e+04) 1.496 (2.048e+04) 1.623 (2.222e+04) 1497 (2.049e+04) 0.6454 (8833)"

bocorss) | R o>~>+ -+ | R v ooz (5% |

Misraic, Start 1 01073 (1221) _2.11(2t.uz)z inf (inf)? 188.7 (2148e+05) 01073 (122:)
[Misratc, start 2] ¥ 0.00491 (5.588) _m.zw.(zus.a)Z inf (inf)? 188.4 (2145¢+05) 000491 (5:588)

MGH17, Start 2

Form Parameters

CERIBST1A f0=0.0, f1=0.0, T2=1.0, f3=3702.76, f4=26061.4, f5=38.7105, f6=37027.1

CERI&ES 1A

300 - Best Fit (trf) *
dfols *
X o
¥ Data P .

250

200

1
[

150

Arbitrary units

100

i
e

30

$k
ety Ko v :-‘xv"** MYXK#M, ¢

04 W = e

T T T T T
36900 37000 37100 37200 37300
Time (us)

1.1. Table Of Contents 9

FitBenchmarking Documentation, Release 0.1.dev1

Performance Profile

With each test FitBenchmarking also produces a Dolan-Moré performance profile:

Performance profile - acc

1.0 = mp
. === amoeba
[e— == = dfols
TR R R L LY TSNS WS Myttt e ——— ——
L I l_ - Imsder: scipy 2-point
- |—._..|_;._—J__ """ (2 failures)
0.8 - | = | | = Imder: scipy 2-point
: Levenberg-MarquardtMD:
- - - ohl | A b d
| I r | = scipy 2-point
| — —_ minuit (1 failure)
| I - . ?nl scip}y 2-point (3
| . . ailures
064 ! |' ! .I B gn_reg: scipy 2-point
| . I J (3 failures)
':.- : CG: scipy 2-point
ll] L-BFGS-B: scipy
P 2-point
0.4 4 I === |m-scipy-no-jac
) : m— trf: scipy 2-point

0.2 1 -

fraction for which solver within f of best

0.0 +—r——+— N,
12 4 6 8 10 102 103 104
f

Fits are taken from all benchmarks, so if FitBenchmarking is run with n problems and m cost functions, the resulting
profile plots will have n*m steps on the y-axis.

The solvers appearing in the top left corner may be considered the best performing on this test set. See Dolan and Moré
(2001) for more information.

10 Chapter 1. FitBenchmarking

https://link.springer.com/article/10.1007/s101070100263
https://link.springer.com/article/10.1007/s101070100263

FitBenchmarking Documentation, Release 0.1.dev1

1.1.2 FitBenchmarking User Documentation

In these pages we describe how to install, run, and set options to use the FitBenchmarking software.

Installation

Fitbenchmarking will install all packages that can be installed through pip. This includes the minimizers from SciPy,
bumps, DFO-GN/LS, Minuit, and also the SASModels package.

To enable Fitbenchmarking with the other supported software, you must install them with the external software instruc-
tions.

Installing FitBenchmarking and default fitting packages

We recommend using for running/installing Fitbenchmarking. The easiest way to install FitBenchmarking is by using
the Python package manager, pip.

Installing via pip

FitBenchmarking can be installed via the command line by entering:

python -m pip install fitbenchmarking[bumps,DFO,gradient_free,minuit,SAS,numdifftools,
—1Imfit,nlopt]

This will install the latest stable version of FitBenchmarking. For all available versions please visit the FitBenchmarking
PyPI project. FitBenchmarking can also use additional software that cannot be installed using pip; please see Installing
External Software for details.

Note: This install will include additional optional packages — see Extra dependencies. Any of the dependencies in the
square brackets can be omitted, if required, and that package will not be available for Benchmarking, or will use the
version of the package already on your system, if appropriate.

Installing from source

You may instead wish to install from source, e.g., to get the very latest version of the code that is still in development.

1. Download this repository or clone it using git: git clone https://github.com/fitbenchmarking/
fitbenchmarking.git

2. Open up a terminal (command prompt) and go into the fitbenchmarking directory.

3. Once you are in the right directory, we recommend that you type

python -m pip install .[bumps,DFO,gradient_free,minuit,SAS,numdifftools,lmfit,nlopt]

4. Additional software that cannot be installed via pip can also be used with FitBenchmarking. Follow the instruc-
tions at Installing External Software.

1.1. Table Of Contents 11

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/
https://pypi.org/project/fitbenchmarking/
https://git-scm.com/

FitBenchmarking Documentation, Release 0.1.dev1

Extra dependencies

In addition to the external packages described at Installing External Software, some optional dependencies can be
installed directly by FitBenchmarking. These are installed by issuing the commands

python -m pip install fitbenchmarking['option-1', 'option-2',...]
or
python -m pip install .['option-1','option-2',...]

where valid strings option-x are:
* bumps- installs the Bumps fitting package.
* DFO — installs the DFO-LS and DFO-GN fitting packages.
* gofit —installs the GOFit fitting package.
e gradient_free — installs the Gradient-Free-Optimizers fitting package

* levmar — installs the levmar fitting package (suitable for Python up to 3.8, see Levmar). Note that the interface
we use also requires BLAS and LAPLACK to be installed on the system, and calls to this minimizer will fail if
these libraries are not present.

e mantid — installs the h5py and pyyaml modules.

* matlab — installs the dill module required to run matlab controllers in fitbenchmarking
* minuit — installs the Minuit fitting package.

¢ SAS — installs the Sasmodels fitting package and the tinycc module.

e numdifftools — installs the numdifttools numerical differentiation package.

* nlopt- installs the NLopt fitting package.

e Imfit- installs the LMFIT and emcee fitting package.

Installing External Software

Fitbenchmarking will install all packages that are available through pip.

To enable Fitbenchmarking with the other supported software, they need to be installed and available on your machine.
We give pointers outlining how to do this below, and you can find install scripts for Ubuntu 18.04 in the directory
/build/<software>/

Ceres Solver

Ceres Solver is used as a fitting software in FitBenchmarking, and is called via the PyCeres interface.
Install instructions can be found on the PyCeres Github page and Ceres Solver documentation

Please note that the PYCERES_LOCATION environment variable must be set.

12 Chapter 1. FitBenchmarking

https://bumps.readthedocs.io
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
https://github.com/ralna/GOFit
https://github.com/SimonBlanke/Gradient-Free-Optimizers
http://users.ics.forth.gr/~lourakis/levmar/
https://pypi.org/project/h5py/
https://pypi.org/project/PyYAML/
https://pypi.org/project/dill/
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
https://github.com/SasView/sasmodels
https://pypi.org/project/tinycc/
https://numdifftools.readthedocs.io/en/latest/index.html
https://github.com/DanielBok/nlopt-python#installation
https://lmfit.github.io/lmfit-py/installation.html
https://emcee.readthedocs.io/en/stable/user/install/
https://github.com/Edwinem/ceres_python_bindings#recommended-build-alongside-ceres
http://ceres-solver.org/installation.html

FitBenchmarking Documentation, Release 0.1.dev1

CUTEst

CUTEst is used to parse SIF files in FitBenchmarking, and is called via the PyCUTEst interface.

Currently this is only supported for Mac and Linux, and can be installed by following the instructions outlined on the
pycutest documentation

Please note that the PYCUTEST_CACHE environment variable must be set, and it must be in the PYTHONPATH.

GSL

GSL is used as a fitting software in FitBenchmarking, and is called via the pyGSL interface.

Install instructions can be found at the pyGSL docs. This package is also installable via pip, provided GSL is available
on your system; see our example build script in build/gsl.

Note: pyGSL may not be installable with the latest versions of pip. We have found that 20.0.2 works for our tests.

Horace

Horace can be installed by following the instructions on the Horace website. In addition, MATLAB and the MATLAB
engine must be installed following the instructions given below.

Levmar

Levmar is available on pip, however the latest release will only work up to Python 3.8. In order to use Levmar with
newer versions of python, you are required to clone the repository and build it locally. This is fast and has been tested
on Ubuntu 20.04.

Instructions for linux are below, for other operating systems the process will be the same.

" git clone git@github.com:bjodah/levmar.git cd levmar pip install . cd .. rm -rf levmar

Mantid

Mantid is used both as fitting software, and to parse data files.

Instructions on how to install Mantid for a range of systems are available at https://download.mantidproject.org/.

MATLAB

MATLAB is available to use as fitting software in FitBenchmarking, and is called via the MATLAB Engine API for
Python.

To use this fitting software, both MATLAB and the MATLAB engine must be installed. Installation instructions for
MATLAB are available at https://uk.mathworks.com/help/install/ug/install-products- with-internet-connection.html,
and instructions for installing and setting up the MATLAB engine are here: https://uk.mathworks.com/help/matlab/
matlab_external/install-the-matlab-engine-for-python.html. Furthermore, Matlab requires additional Python packages
to be installed. You can find the instructions on how to install these packages by following the link provided: here.

1.1. Table Of Contents 13

https://jfowkes.github.io/pycutest/_build/html/install.html
http://pygsl.sourceforge.net/
https://pace-neutrons.github.io/Horace/3.6.0/Download_and_setup.html
https://download.mantidproject.org/
https://uk.mathworks.com/help/install/ug/install-products-with-internet-connection.html
https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

FitBenchmarking Documentation, Release 0.1.dev1

RALFit

RALFit is available to use as fitting software.

Instructions on how to build the python interface are at https://ralfit.readthedocs.io/projects/Python/en/latest/install.
html

Theseus

Theseus is used as a fitting software in FitBenchmarking, and is called via theseus-ai python module which requries
pytorch

Install instructions can be found on the Theseus Github page

Running FitBenchmarking

Once installed, issuing the command

fitbenchmarking

will run the NIST average difficulty problem set on SciPy minmizers.

Running alternative problems

Other problems written in a supported file format can be analyzed with FitBenchmarking by passing the path using the
-p or --problem-sets argument. Example problems can be downloaded from Benchmark problems, and they can
also be found in the fitbenchmarking/examples directory of the code.

For example, to run the NIST low difficulty set from the base directory of the source, type into the terminal:

fitbenchmarking -p examples/benchmark_problems/NIST/low_difficulty

Changing the options

An options file can also be passed with the -o or --options-file argument. For example, the template file can be
run by issuing the command

fitbenchmarking -o examples/options_template.ini \
-p examples/benchmark_problems/NIST/low_difficulty

Details about how the options file must be formatted are given in FitBenchmarking Options.

14 Chapter 1. FitBenchmarking

https://ralfit.readthedocs.io/projects/Python/en/latest/install.html
https://ralfit.readthedocs.io/projects/Python/en/latest/install.html
https://github.com/facebookresearch/theseus#getting-started/

FitBenchmarking Documentation, Release 0.1.dev1

Changing options via the command line

It is possible to change the following options via the command line rather than from an .ini file or from the default

options. They can be changed using the arguments in the table below.

Option

Argument

1
(o]

--options-file
--problem_sets
--results_dir
- -debug-mode
--num_runs

Options file
Problem sets
Results directory
Debug mode

1
= 0O =T

Algorithm type -a --algorithm_type

-s --software
Jacobian method -J --jac_method
Cost function type -C --cost_func_type
Make plots --make_plots
Don’t make plots --dont_make_plots
Open results browser --results_browser
Don’t open results browser --no_results_browser
Show progress bar --pbar
Don’t show progress bar --no_pbar
Table type -t --table_type
Logging file name -f --logging_file_name
Append log --append_log
Level of logging -1 --level

For example, to change the results directory:

Help

The path to a %(prog)s options file

Paths to directories containing problem sets
The directory to store resulting files in

Enable debug mode (prints traceback)

Set the number of runs to average

Select what type of algorithm is used within a
specific software

Select the fitting software to benchmark

Set the Jacobian to be used

Set the cost functions to be used

Use this option if you have decided to create
plots during runtime

Use this option if you have decided not to
create plots during runtime

Use this option if you have decided to

open a browser window to show the results of
a fit benchmark

Use this option if you have decided notto a
browser window to show the results of a fit
benchmark

Use this option if you would like to see the
progress bar during runtime

Use this option if you do not want to see the
progress bar during runtime

Select the mode for displaying values in the
resulting table

Select the type of table to be produced in
FitBenchmarking

Specify the file path to write the logs to

Use this option if you have decided to log in
append mode. If append mode is active, the
log file will be extended with each subsequent
run

Use this option if you have decided not to log
in append mode. If append mode is not active,
the log will be cleared after each run

Specify the minimum level of logging to display
on console during runtime

Select the amount of information displayed
from third-parties

The default directory where the results are saved can be changed using the -r or --results-dir argument. The

results directory option can also be changed in the options file.

fitbenchmarking -r new_results/

The default results directory is fitbenchmarking_results.

Multiple options

1.1. Table Of Contents

15

FitBenchmarking Documentation, Release 0.1.dev1

For an option for which you wish to make several choices e.g. table_type, simply use a space to separate your choices:

fitbenchmarking -t acc runtime

If you wish to change several different options, use a space to separate the arguments:

fitbenchmarking -t acc -1 WARNING

Help

For more information on changing options via the command line, you can use the -h or --help argument.

fitbenchmarking -h

Optimization Algorithms

The different minimizers used in Fitbenchmarking implement various numerical optimization algorithms. These are
catagorised by the algorithm type list, with options detailed below, along with advantages/disadvantages of each algo-
rithm.

Derivative Free

Derivative Free methods do not compute the gradient of a function and so are often used to minimize problems with
nondifferentiable functions. Some derivative free methods will attempt to approximate the gradient using a finite
difference approach, another class of methods constructs a linear or quadratic model of the objective functions and
uses a trust region approach to find the next iterate. Another widely used derivative free method is the Nelder-Mead
simplex method. [Nocedal]

To select all minimizers in fitbenchmarking that use derivative free methods, use the algorithm type deriv_free.

Simplex (simplex)

Nelder-Mead is a simplex based algorithm, with a simplex S in IR being defined as the convex hull of n + 1 vertices
{xlv (X3} x’n+1}-

In an iteration of the algorithm, the idea is to remove the vertex with the worst function value. It is then replaced with
another point with a better value. An iteration consists of the following steps:

1. Ordering the vertices of S so that f(z1) < f(z2) < ... < f(zpt1)
2. Calculating the centroid, Z of the best n points & = % S

3. Carry out a transformation to compute the new simplex. Try to replace only the worst vertex z,,4; with a better
point, which then becomes the new vertex. If this fails, the simplex is shrunk towards the best vertex x; and n
new vertices are computed. The algorithm terminates when the simplex S is sufficiently small. [Singer]

Advantages:

¢ Method only requires 1 or 2 functions evaluations per iteration.

» Gives significant improvements in first few iterations - quick to produce satisfactory results.
Disadvantages:

* Stagnation can occur at non-optimal points, with large numbers of iterations leading to negligible improve-
ment even when nowhere near a minimum.

16 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

e If numerical computation of function derivative can be trusted, then other algorithms are more robust.

[Singer]

Line Search Methods

In line search methods, each iteration is given by xx4+1 = =) + aypk, where py, is the search direction and ay is the
step length.

The search direction is often of the form p;, = — B, v fr where By, is a symmetric and non-singular matrix. The form
of py, is dependent on algorithm choice.

The ideal step length would be mingso f(zx + apy) but this is generally too expensive to calculate. Instead an inexact
line search condition such as the Wolfe Conditions can be used:

flan +apr) < flar) + oV il pe
f(@r + axpr) pe > 2V £ b

With 0 < ¢; < co < 1. Here, the first condition ensures that o gives a sufficient decrease in f, whilst the second
condition rules out unacceptably short steps. [Nocedal]

Steepest Descent (steepest_descent)

Simple method where search direction py, is set to be —V fy, i.e. the direction along which f decreases most rapidly.
Advantages:

* Low storage requirements

* Easy to compute
Disadvantages:

» Slow convergence for nonlinear problems

[Nocedal]

Conjugate Gradient (conjugate_gradient)

Conjugate Gradient methods have a faster convergence rate than Steepest Descent but avoid the high computational
cost of methods where the inverse Hessian is calculated.

Given an iterate xg, evaluate fo = f(z¢), Vfo = Vf(xo).
Set pg + —Vfo, k<0
Then while V fi, # 0:

Carry out a line search to compute the next iterate, then evaluate V fi1 and use this to determine the subsequent
conjugate direction pg11 = —V f(2r11) + BrPrk

Different variations of the Conjugate Gradient algorithm use different formulas for Sy, for example:

fea Vs
VIEY fi

Vi (Vi1 =V fx)
V7l

Fletcher-Reeves: Si11 = Polak-Ribiere: 41 =
[Nocedal] [Poczos]
Advantages:

» Considered to be one of the best general purpose methods.

1.1. Table Of Contents 17

FitBenchmarking Documentation, Release 0.1.dev1

* Faster convergence rate compared to Steepest Descent and only requires evaluation of objective function
and it’s gradient - no matrix operations.

Disadvantages:

* For Fletcher-Reeves method it can be shown that if the method generates a bad direction and step, then
the next direction and step are also likely to be bad. However, this is not the case with the Polak Ribiere
method.

* Generally, the Polak Ribiere method is more efficient that the Fletcher-Reeves method but it has the disad-
vantage is requiring one more vector of storage.

[Nocedal]

BFGS (bfgs)

Most popular quasi-Newton method, which uses an approximate Hessian rather than the true Hessian which is used in
a Newton line search method.

Starting with an initial Hessian approximation H and starting point xg:
While ||V fi|| > e

Compute the search direction py, = —HiV fi

Then find next iterate x ;41 by performing a line search.

Next, define s, = zp41 — z and y, = V fr11 — V f, then compute
Hi1 = (I = peseyi) He(I — pryrsic) + pesesi
. _ 1
with p, = WTsn
Advantages:

* Superlinear rate of convergence

* Has self-correcting properties - if there is a bad estimate for Hy, then it will tend to correct itself within a
few iterations.

* No need to compute the Jacobian or Hessian.
Disadvantages:
* Newton’s method has quadratic convergence but this is lost with BFGS.

[Nocedal]

Gauss Newton (gauss_newton)

Modified Newton’s method with line search. Instead of solving standard Newton equations
V2 f(xx)p = =V f(x),
solve the system
JE N = = I

(where Jy, is the Jacobian) to obtain the search direction kaN . The next iterate is then set as x4+ = i + pgN .

Here, the approximation of the Hessian V2 f;, ~ JkT Ji has been made, which helps to save on computation time as
second derivatives are not calculated.

18 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Advantages:
¢ Calculation of second derivatives is not required.

* Ifresiduals or their second order partial derivatives are small, then .J, ,CT Jy is a close approximation to V2 f,
and convergence of Gauss-Newton is fast.

» The search direction pS’N is always a descent direction as long as .J;, has full rank and the gradient V fj, is
nonzero.

Disadvantages:

* Without a good initial guess, or if the matrix J; Jj, is ill-conditioned, the Gauss Newton Algorithm is very
slow to converge to a solution.

* If relative residuals are large, then large amounts of information will be lost.
e J;, must be full rank.

[Nocedal] [Floater]

Trust Region

Trust region approach involves constructing a model function m, that approximates the function f in the region, A,
near the current point . The model my is often a quadratic obtained by a Taylor Series expansion of the function
around xy,.

1
mi(p) = fr + Vf(ze) p+ ipTka

where By, is an approximation of the Hessian.

The subproblem to be solved at each iteration in order to find the step length is min, mg(p), subject to ||p|| < Ay.
[Nocedal]

To select all minimizers in fitbenchmarking that use a trust region approach, use the algorithm type trust_region.

Levenberg-Marquardt (levenberg-Marquardt)

Most widely used optimization algorithm, which uses the same Hessian approximation as Gauss-Newton but uses a
trust region strategy instead of line search. As the Hessian approximation is the same as Gauss-Newton, convergence
rate is similar.

For Levenberg-Marquardt, the model function my, is chosen to be
1 1
my(p) = §||7“k\|2 +p e+ §PTJ1gTJkP

So, for a spherical trust region, the subproblem to be solved at each iteration is miny, £ || .J,p-+r ||, subjectto [|p|| < Ay.

Levenberg-Marquardt uses a combination of gradient descent and Gauss-Newton method. When the solution p&™
lies inside of the trust region A, then pGN also solves the sub-problem. Otherwise, the current iteration is far from
the optimal value and so the search direction is determined using steepest descent, which performs better than Gauss-
Newton when far from the minimum.

Advantages:
¢ Robust (more so than Gauss-Newton).
¢ Avoids the weakness with Gauss-Newton that Jacobian must be full rank.

* Fast to converge.

1.1. Table Of Contents 19

FitBenchmarking Documentation, Release 0.1.dev1

* Good initial guess not required.

Disadvantages:
* Similarly to Gauss-Newton, not good for large residual problems.
* Can be slow to converge if a problem has many parameters

[Nocedal] [Ranganathan]

Algorithm Types of Available Minimizers

Least Squares (1s):

{'bumps': ['lm-bumps', 'scipy-leastsq'],

'ceres': ['Levenberg_Marquardt',
'Dogleg’,
'BFGS',
'LBFGS"',
'steepest_descent',
'Fletcher_Reeves',
'Polak_Ribiere',
'Hestenes_Stiefel'],

'dfo': ['dfogn', 'dfols'],

'gofit': ['alternating', 'multistart', 'regularisation'],

'gradient_free': [],

'gsl': ['lmsder', 'lmder'],

'horace': ['lm-1sqr'],

'levmar': ['levmar'],

'"Imfit': ['least_squares', 'leastsq'],

'mantid': ['Levenberg-Marquardt',
'Levenberg-MarquardtMD',
'Trust Region',

'FABADA'],
'matlab’': [],
'matlab_curve': ['Trust-Region', 'Levenberg-Marquardt'],
'matlab_opt': ['levenberg-marquardt', 'trust-region-reflective'],

'matlab_stats': ['Levenberg-Marquardt'],
'‘minuit': [],
'nlopt': [],
'ralfit': ['gn',
'hybrid',
'newton',
'newton-tensor',
'gn_reg',
'hybrid_reg',
'newton_reg',
'newton-tensor_reg'],
'scipy': [Nome],
'scipy_go': [None],
'scipy_ls': ['lm-scipy', 'trf', 'dogbox'],
'theseus': ['Levenberg_Marquardt', 'Gauss-Newton']}

Deriv-Free (deriv_free):

20 Chapter 1.

FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

{'bumps': ['amoeba', 'de', 'dream'],
'ceres': [],
'dfo': ['dfogn', 'dfols'],
'gofit': [],

'gradient_free': ['HillClimbingOptimizer',
'RepulsingHillClimbingOptimizer',
'SimulatedAnnealingOptimizer’,
'RandomSearchOptimizer',
'RandomRestartHillClimbingOptimizer',
'RandomAnnealingOptimizer"',
'ParallelTemperingOptimizer"',
'ParticleSwarmOptimizer',
'EvolutionStrategyOptimizer',
'BayesianOptimizer',
'TreeStructuredParzenEstimators',
'DecisionTreeOptimizer'],

'gsl': ['nmsimplex', 'nmsimplex2'],

'horace': ['lm-1sqr'],

'levmar': [],

'Imfit': ['powell', 'cobyla', 'emcee', 'nelder', 'differential_evolution'],

'mantid': ['Simplex', 'FABADA'],

'matlab': ['Nelder-Mead Simplex'],

'matlab_curve': [],

'matlab_opt': [],

'matlab_stats': [],

'minuit': ['simplex'],

'nlopt': ['LN_BOBYQA', 'LN_NEWUOA', 'LN_NEWUOA_BOUND', 'LN_PRAXIS'],

'ralfit': [],

'scipy': ['Nelder-Mead', 'Powell', 'COBYLA'],

'scipy_go': ['differential_evolution'],

'scipy_ls': [None],

'theseus': []}

General (general):

{'bumps': ['amoeba', 'newton', 'de', 'dream'],
'ceres': [],
‘dfo': [1],
'gofit': [],

'gradient_free': ['HillClimbingOptimizer',
'RepulsingHillClimbingOptimizer',
'SimulatedAnnealingOptimizer’,
'RandomSearchOptimizer',
'RandomRestartHillClimbingOptimizer'
'RandomAnnealingOptimizer"',
'ParallelTemperingOptimizer"',
'ParticleSwarmOptimizer',
'EvolutionStrategyOptimizer',
'BayesianOptimizer',
'TreeStructuredParzenEstimators',
'DecisionTreeOptimizer'],

'gsl': ['nmsimplex',

'nmsimplex2',

(continues on next page)

1.1. Table Of Contents 21

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

'conjugate_pr',
'conjugate_fr',
'vector_bfgs',
'vector_bfgs2',
'steepest_descent'],

'horace': [],
'levmar': [],
'Imfit': ['nelder’',
'powell’,
'cg',
'bfgs’,
'newton',
'1bfgs’,
"tnc',
'slsqgp’,
'differential_evolution',
'shgo’,
"dual_annealing'],
'mantid': ['BFGS',
'Conjugate gradient (Fletcher-Reeves imp.)',
'Conjugate gradient (Polak-Ribiere imp.)',
'Damped GaussNewton',
'Simplex’,
'SteepestDescent'],
'matlab': ['Nelder-Mead Simplex'],
'matlab_curve': [],
'matlab_opt': [],
'matlab_stats': [],
'minuit': ['migrad'],
'nlopt': ['LD_SLSQP', 'LD_VAR2', 'LD_VAR1', 'AUGLAG', 'AUGLAG_EQ'],
'ralfit': [],
'scipy': ['Nelder-Mead',
'Powell’,
'CG',
'BFGS',
'Newton-CG',
'L-BFGS-B',
"TNC',
'SLSQP'],
'scipy_go': ['differential_evolution', 'shgo', 'dual_annealing'],
'scipy_ls': [None],
'theseus': []}
Simplex (simplex):
{'bumps': ['amoeba'],
'ceres': [],
‘dfo': [],
'gofit': [],
'gradient_free': [],
'gsl': ['nmsimplex', 'nmsimplex2'],
'horace': [],
(continues on next page)
22 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

'levmar': [],

'Imfit': ['nelder'],

'mantid': ['Simplex'],

'matlab': ['Nelder-Mead Simplex'],
'matlab_curve': [],

'matlab_opt': [],

'matlab_stats': [],

'minuit': ['simplex'],

'nlopt': ['LN_NELDERMEAD', 'LN_SBPLX'],
'ralfit': [],

'scipy': ['Nelder-Mead'],
'scipy_go': [1,

'scipy_ls': [1,

'theseus': []}

Trust Region (trust_region):

{'bumps': ['lm-bumps', 'scipy-leastsq'],

'ceres': ['Levenberg_Marquardt', 'Dogleg'],
'dfo': ['dfols', 'dfogn'],
'gofit': [],

'gradient_free': [],
'gsl': ['lmder', 'lmsder'],
'horace': [],
'levmar': ['levmar'],
'Imfit': ['least_squares',
'trust-ncg',
'trust-exact',
'"trust-krylov',
'trust-constr',
'dogleg'],
'mantid': ['Trust Region', 'Levenberg-Marquardt', 'Levenberg-MarquardtMD'],
'matlab’': [],
'matlab_curve': ['Trust-Region', 'Levenberg-Marquardt'],
'matlab_opt': ['levenberg-marquardt', 'trust-region-reflective'],
'matlab_stats': ['Levenberg-Marquardt'],
'minuit': [],
'nlopt': ['LN_COBYLA', 'LD_CCSAQ', 'LD_MMA'],
'ralfit': ['gn', 'hybrid', 'newton', 'newton-tensor'],
'scipy': ['trust-ncg',
'trust-exact',
'trust-krylov',
'trust-constr',
'dogleg'],
'scipy_go': [1,
'scipy_ls': ['lm-scipy', 'trf', 'dogbox'],
'theseus': []}

Levenberg-Marquardt (1evenberg-marquardt):

{'bumps': ['lm-bumps', 'scipy-leastsq'],
'ceres': [],

(continues on next page)

1.1. Table Of Contents 23

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

‘dfo': [1],

'gofit': ['regularisation'],
'gradient_free': [],

'gsl': ['lmder', 'lmsder'],

'horace': ['lm-1sqr'],

'levmar': ['levmar'],

'Imfit': ['leastsq'],

'mantid': ['Levenberg-Marquardt', 'Levenberg-MarquardtMD'],
'matlab’': [],

'matlab_curve': ['Levenberg-Marquardt'],
'matlab_opt': ['levenberg-marquardt'],
'matlab_stats': ['Levenberg-Marquardt'],
'minuit': [],

'nlopt': [],
'ralfit': ['gn', 'gn_reg'],
"scipy': [1,

'scipy_go': [1,
'scipy_ls': ['lm-scipy'],
'theseus': ['Levenberg_Marquardt']}

Gauss Newton (gauss_newton):

{"bumps': [],
'ceres': [],
'dfo': ['dfogn'],
'gofit': ['regularisation'],
'gradient_free': [],
'gsl': [1,
'horace': [],
'levmar': [],

'"Imfit': ['newton', 'tnc'l],
'mantid': ['Damped GaussNewton'],
'matlab’': [],

'matlab_curve': [],
'matlab_opt': [],
'matlab_stats': [],

'minuit': [],

'nlopt': ['LD_TNEWTON_PRECOND_RESTART',
'LD_TNEWTON_PRECOND ',
'LD_TNEWTON_RESTART',
'LD_TNEWTON'],

'ralfit': ['gn', 'gn_reg'],

'scipy': [1,

'scipy_go': [1,

'scipy_l1s': [1,

'theseus': ['Gauss-Newton']}

BFGS (b£fgs):

{'bumps': ['newton'],
'ceres': ['BFGS', 'LBFGS'],
‘dfo': [],

(continues on next page)

24 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

'gofit': [],

'gradient_free': [],

'gsl': ['vector_bfgs', 'vector_bfgs2'],
'horace': [],

'levmar': [],

'"Imfit': ['lbfgsb', 'bfgs'],
'mantid': ['BFGS'],

'matlab’': [],

'matlab_curve': [],
'matlab_opt': [],
'matlab_stats': [],

'‘minuit': [],

'nlopt': ['LD_LBFGS'],
'ralfit': [],

'scipy': ['BFGS', 'L-BFGS-B'],
'scipy_go': [1,

'scipy_ls': [],

"theseus': []}

Conjugate Gradient (conjugate_gradient):

{'bumps': [],
'ceres': ['Fletcher_Reeves', 'Polak_Ribiere', 'Hestenes_Stiefel'],
'dfo': [],
'gofit': [],
'gradient_free': [],
'gsl': ['conjugate_fr', 'conjugate_pr'],

'horace': [],

'levmar': [],

'"Imfit': ['cg', 'newton', 'powell'],

'mantid': ['Conjugate gradient (Fletcher-Reeves imp.)',
'Conjugate gradient (Polak-Ribiere imp.)'],

'matlab’': [],

'matlab_curve': [],

'matlab_opt': [],

'matlab_stats': [],

'minuit': [],

'nlopt': ['LN_COBYLA'],

'ralfit': [],

'scipy': ['CG', 'Newton-CG', 'Powell'],

'scipy_go': [1,

'scipy_ls': [1,

"theseus': []}

Steepest Descent (steepest_descent):

{"bumps': [],
'ceres': ['steepest_descent'],
‘dfo': [1],
'gofit': [1],

'gradient_free': [],
'gsl': ['steepest_descent'],

(continues on next page)

1.1. Table Of Contents 25

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

'horace': [],
'levmar': [],
"Imfit': [],
'mantid': ['SteepestDescent'],
'matlab': [],
'matlab_curve': [],
'matlab_opt': [],
'matlab_stats': [],
'minuit': [],
'nlopt': [],
'ralfit': [],
'scipy': [1,

'scipy_go': [1,
'scipy_ls': [1,

'theseus'’

¢ [11

Global Optimization (global_optimization):

{'bumps': ['de', 'dream'],
'ceres': [],
'dfo': [1,
'gofit': ['alternating', 'multistart'],

'gradient_free': ['HillClimbingOptimizer',

'RepulsingHillClimbingOptimizer"',
'SimulatedAnnealingOptimizer"',
'RandomSearchOptimizer',
'RandomRestartHillClimbingOptimizer',
'RandomAnnealingOptimizer"',
'ParallelTemperingOptimizer"',
'ParticleSwarmOptimizer',
'EvolutionStrategyOptimizer"',
'BayesianOptimizer',
'TreeStructuredParzenEstimators’,
'DecisionTreeOptimizer'],

'gsl': [1,
'horace': [],
'levmar': [],
'"Imfit': ['differential_evolution', 'ampgo', 'shgo', 'dual_annealing'],
'mantid': ['FABADA'],
'matlab’': [],
'matlab_curve': [],
'matlab_opt': [],
'matlab_stats': [],
'‘minuit': [],
'nlopt': ['GN_DIRECT',
'GN_DIRECT_L',
'GN_DIRECT_L_RAND',
'GNL_DIRECT_NOSCAL',
'GN_DIRECT_L_NOSCAL',
'GN_DIRECT_L_RAND_NOSCAL",
'GN_ORIG_DIRECT',
'GN_ORIG_DIRECT_L',
(continues on next page)
26 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

'GN_CRS2_LM',
'G_MLSL_LDS"',
'G_MLSL',
'GD_STOGO',
'GD_STOGO_RAND',
'"GN_AGS',
"GN_ISRES'],

'ralfit': [1,

'scipy': [1,

'scipy_go': ['differential_evolution', 'shgo', 'dual_annealing'],

'scipy_ls': [1,

"theseus': []}

Cost functions

Fitbenchmarking supports multiple cost functions. These can be set via the cost_func_type option in Fitting Options.

Fitbenchmarking is designed to work with problems that have the form
min F(r(z, y, p))-
p

The function F'(-) is known as the cost function, while the function r(x, u,p) is known as the residual of the cost
function. The residual will generally be zero if the fit was perfect. Both of these quantities together define a cost
function in FitBenchmarking.

The cost functions that are currently supported are:
* Non-linear least squares cost function

class fitbenchmarking.cost_func.nlls_cost_func.NLLSCostFunc(problem)

This defines the non-linear least squares cost function where, given a set of n data points (x;, y;),
associated errors e;, and a model function f(x,p), we find the optimal parameters in the root
least-squares sense by solving:

mlnz Flaip)?

where p is a vector of length m, and we start from a given initial guess for the optimal parameters.
More information on non-linear least squares cost functions can be found here.

* Weighted non-linear least squares cost function

class fitbenchmarking.cost_func.weighted_nlls_cost_func.WeightedNLLSCostFunc(problem)

This defines the weighted non-linear least squares cost function where, given a set of n data points
(x4, y:), associated errors e;, and a model function f(z, p), we find the optimal parameters in the
root least-squares sense by solving:

mmz (y - rup))

where p is a vector of length m, and we start from a given initial guess for the optimal parameters.
More information on non-linear least squares cost functions can be found here.

* Hellinger non-linear least squares cost function

1.1. Table Of Contents 27

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Non-linear_least_squares

FitBenchmarking Documentation, Release 0.1.dev1

class fitbenchmarking.cost_func.hellinger_nlls_cost_func.HellingerNLLSCostFunc(problem)

This defines the Hellinger non-linear least squares cost function where, given a set of n data points
(z4,y:), associated errors e;, and a model function f(z, p), we find the optimal parameters in the
Hellinger least-squares sense by solving:

win 3 (vii - VT@n)’
i=1

where p is a vector of length m, and we start from a given initial guess for the optimal parame-
ters. More information on non-linear least squares cost functions can be found here and for the
Hellinger distance measure see here.

¢ Poisson deviance cost function

class fitbenchmarking.cost_func.poisson_cost_func.PoissonCostFunc(problem)

This defines the Poisson deviance cost-function where, given the set of n data points (x;,y;),
and a model function f(x,p), we find the optimal parameters in the Poisson deviance sense by
solving:

m;nz (yi (logy; —log f(xi,p)) — (yi — f(xi,p)))

i=1
where p is a vector of length m, and we start from a given initial guess for the optimal parameters.
This cost function is intended for positive values.

This cost function is not a least squares problem and as such will not work with least squares min-
imizers. Please use algorithm_type to select general solvers. See options docs (Fitting Options)
for information on how to do this.

FitBenchmarking Output

FitBenchmarking produces tables and reports called support pages as outputs. The links below give descriptions of
these outputs.

Tables
Comparison Table

class fitbenchmarking.results_processing.compare_table.CompareTable (results, best_results,
options, group_dir,
pp_locations, table_name)

The combined results show the accuracy in the first line of the cell and the runtime on the second line of the cell.

Accuracy Table

class fitbenchmarking.results_processing.acc_table.AccTable(results, best_results, options,
group_dir, pp_locations, table_name)

The accuracy results are calculated by evaluating the cost function with the fitted parameters.

28 Chapter 1. FitBenchmarking

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Hellinger_distance

FitBenchmarking Documentation, Release 0.1.dev1

Runtime Table

class fitbenchmarking.results_processing.runtime_table.RuntimeTable (results, best results,
options, group_dir,
pp_locations, table_name)

The timing results are calculated from an average (over num_runs) using the timeit module in python. num_runs
is set in FitBenchmarking Options.

Local Minimizer Table

class fitbenchmarking.results_processing.local_min_table.LocalMinTable (results, best results,
options, group_dir,
pp_locations,

table_name)
T
The local min results shows a True or False value together with ‘lﬁr\T‘l . The True or False indicates whether
the software finds a minimum with respect to the following criteria:

« ||r|] < RES_TOL,
« [|J7r|| < GRAD_TOL,

« Ul < GRAD_TOL,

where J and r are the Jacobian and residual of f(x, p), respectively. The tolerances can be found in the results
object.

Emissions Table

class fitbenchmarking.results_processing.emissions_table.EmissionsTable (results, best_results,
options, group_dir,
pp_locations,
table_name)

The emissions (kg CO,eq) results are calculated from an average (over num_runs) using the codecarbon module.
num_runs is set in FitBenchmarking Options.

Configuration for codecarbon is set in .codecarbon.config.

Please note that for tracking CPU power usage on Windows or Mac, Intel Power Gadget shoud also be in-
stalled. For more information, see the Methodology section of the codecarbon docs.

Display modes

The tables for accuracy, runtime, emissions, and compare have three display modes:

{ 'abs': 'Absolute values are displayed in the table.',

'both': 'Absolute and relative values are displayed in the table '
'in the format "~ “abs (rel) ',
'rel': 'Relative values are displayed in the table.'}

This can be set in the option file using the Comparison Mode option.

The Local Minimizer Table table is formatted differently, and doesn’t use this convention.

1.1. Table Of Contents 29

https://docs.python.org/2/library/timeit.html
https://mlco2.github.io/codecarbon/index.html
https://mlco2.github.io/codecarbon/methodology.html#cpu

FitBenchmarking Documentation, Release 0.1.dev1

Performance profile

Below the table there is a Performance Profile.

Support Pages

In each of the tables, a fitting_report for an individual result can be accessed by clicking on the associated table cell.
Clicking the problem name at the start of a row will open a Problem Summary Page for the problem as a whole.

Fitting Report

The fitting report pages can be used to see more information about the problem and a given fit.

Each page represents a single fitting combination and is split into 2 sections.

Problem Outline

First is the initial problem. Here you will see information about the function being fit and the set of initial parameters
used for the fitting. If plots are enabled (see Make plots (make_plots)), you will also see a scatter plot of the data to fit
with a line of the initial fit given to the minimizer.

Fitting Results

The second section focusses on the results of the fitting. Here you will find the minimizer name and the final parameters
for the fit found by the minimizer. A plot of the fit is also shown with an overlaid best fit from whichever minimizer
was found to produce the smallest error.

Problem Summary Page

The problem summary page can be used to give an overview of the problem and solutions obtained.

Problem Outline

First is the initial problem. Here you will see information about the function being fit and the set of initial parameters
used for the fitting. If plots are enabled (see Make plots (make_plots)), you will also see a scatter plot of the data to fit
with a line of the initial fit given to the minimizer.

Comparison

The main plot on the page shows a comparison of all fits at once. This can be used to compare how cost functions
perform for a problem accross all minimizers.

This uses colours to identify the cost function for each fit and shows all fits on a single graph. The best minimizer for
each cost function is more pronounced on the plot.

This should not be used to identify the best individual fit, but can be a good indication of whether cost functions are
biased to certain datapoints in the input.

30 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Best Plots

The page ends with an expandable section for each cost function tested, which gives the parameter values and plot of
the best fit obtained for that cost function.

Benchmark problems

To help choose between the different minimizers, we have made some curated problems available to use with FitBench-
marking. It is also straightforward to add custom data sets to the benchmark, if that is more appropriate; see Problem
Definition Files for specifics of how to add additional problems in a supported file format.

Downloads

You can download a folder containing all examples here: .zip or .tar.gz

Individual problem sets are also available to download below.

We supply some standard nonlinear least-squares test problems in the form of the NIST nonlinear regression set and
the relevant problems from the CUTEst problem set, together with some real-world data sets that have been extracted
from Mantid and SASView usage examples and system tests. We’ve made it possible to extend this list by following
the steps in Adding Fitting Problem Definition Types.

Each of the test problems contain:
* a data set consisting of points (x;, y;) (with optional errors on y;, 0;);
* a definition of the fitting function, f(3;z); and
* (at least) one set of initial values for the function parameters 3,,.

If a problem doesn’t have observational errors (e.g., the NIST problem set), then FitBenchmarking can approximate
errors by taking o; = ,/y;. Alternatively, there is an option to disregard errors and solve the unweighted nonlinear
least-squares problem, setting o; = 1.0 irrespective of what has been passed in with the problem data.

As we work with scientists in other areas, we will extend the problem suite to encompass new categories. The Fit-
Benchmarking framework has been designed to make it easy to integrate new problem sets, and any additional data
added to the framework can be tested with any and all of the available fitting methods.

Currently FitBenchmarking ships with data from the following sources:

CrystalField Data (Mantid)

Download .zip or .tar.gz

This folder (also found in examples/benchmark_problems/CrystalField) contains a test set for inelastic neutron scatter-
ing measurements of transitions between crystal field energy levels.

This problem has 8 parameters, and fits around 200 data points.

Warning: The external package Mantid must be installed to run this data set. See /nstalling External Software for
details.

1.1. Table Of Contents 31

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://github.com/ralna/CUTEst/wiki
https://www.mantidproject.org
https://www.sasview.org

FitBenchmarking Documentation, Release 0.1.dev1

CUTESst (NIST files)

Download .zip or .tar.gz

This folder (also found in examples/benchmark_problems/CUTEst) contains several problems from the CUTEst con-
tinuous optimization testing environment which have been converted to the NIST format.

These problems all have 8 unknown parameters, and fit around 15 data points with the exception of VESUVIOLS which
fits around 1000.

Data Assimilation

Download .zip or .tar.gz

This folder (also found in examples/benchmark_problems/Data_Assimilation) contains two examples using the data
assimilation problem definition in fitbenchmarking. These examples follow the method set out in this paper.

These data files are synthetic and have been generated as an initial test of the minimizers. We plan to extend this with
time series data which is more representative of the expectations for data assimilation in future updates.

These problems have either 2 or 3 unknown parameters, and fit either 100 or 1000 data points for Simplified ANAC
and Lorentz problems respectively.

Powder Diffraction Data (SIF files)

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/DIAMOND_SIF) contain data from powder
diffraction experiments. The data supplied comes from the [14 Hard X-Ray Nanoprobe beamline at the Diamond Light
source, and has been supplied in the SIF format used by CUTEst.

These problems have either 66 or 99 unknown parameters, and fit around 5,000 data points.

Warning: The external packages CUTEst and pycutest must be installed to run this data set. See Installing External
Software for details.

MultiFit Data (Mantid)

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/MultiFit) contain data for testing the MultiFit
functionality of Mantid. This contains a simple data set, on which two fits are done, and a calibration dataset from the
MuSR spectrometer at ISIS, on which there are four fits available. See The MultiFit documentation for more details.

Basic Multifit has 3 unknown parameters, and fits 40 data points. MUSR62260 has 18 unknown parameters, and fits
around 8000 data points.

Warning: The external package Mantid must be installed to run this data set. See Installing External Software for
details.

This will also only work using the Mantid Minimizers.

32 Chapter 1. FitBenchmarking

https://github.com/ralna/CUTEst
https://www.researchgate.net/publication/324956488_Data_assimilation_approach_to_analysing_systems_of_ordinary_differential_equations
https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I14.html
https://github.com/ralna/CUTEst
https://www.isis.stfc.ac.uk/Pages/musr.aspx

FitBenchmarking Documentation, Release 0.1.dev1

Muon Data (Mantid)

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/Muon) contain data from Muon spectrome-
ters. The data supplied comes from the HiFi and EMU instruments at STFC’s ISIS Neutron and Muon source, and has
been supplied in the format that Mantid uses to process the data.

These problems have between 5 and 13 unknown parameters, and fit around 1,000 data points.

Warning: The external package Mantid must be installed to run this data set. See Installing External Software for
details.

Neutron Data (Mantid)

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/Neutron) contain data from Neutron scattering
experiments. The data supplied comes from the Engin-X, GEM, eVS, and WISH instruments at STFC’s ISIS Neutron
and Muon source, and has been supplied in the format that Mantid uses to process the data.

The size of these problems differ massively. The Engin-X calibration problems find 7 unknown parameters, and fit to
56-67 data points. The Engin-X vanadium problems find 4 unknown parameters, and fit to around 14,168 data points.
The eVS problems find 8 unknown parameters, and fit to 1,025 data points. The GEM problem finds 105 unknown
parameters, and fits to 1,314 data points. The WISH problems find 5 unknown parameters, and fit to 512 data points.

Warning: The external package Mantid must be installed to run this data set. See /nstalling External Software for
details.

NIST

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/NIST) contain data from the NIST Nonlinear
Regression test set.

These problems are split into low, average and high difficulty. They have between 2 and 9 unknown parameters, and fit
between 6 and 250 data points.

Poisson Data

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/Poisson) contain both simulated and real data
measuring particle counts. The real data is ISIS muon data, and the simulated datasets have been made to represent
counts using models provided by both Mantid and Bumps.

These problems have between 4 and 6 unknown parameters, and around 350, 800, and 2000 data points for simulated
bumps, HIFI_160973, and simulated mantid respectively.

1.1. Table Of Contents 33

https://www.isis.stfc.ac.uk/Pages/hifi.aspx
https://www.isis.stfc.ac.uk/Pages/EMU.aspx
https://mantidproject.org/
https://www.isis.stfc.ac.uk/Pages/Engin-X.aspx
https://www.isis.stfc.ac.uk/Pages/gem.aspx
https://www.isis.stfc.ac.uk/Pages/Vesuvio.aspx
https://www.isis.stfc.ac.uk/Pages/wish.aspx
https://mantidproject.org/
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

FitBenchmarking Documentation, Release 0.1.dev1

Warning: The external package Mantid must be installed to run this data set. See Installing External Software for
details.

Small Angle Scattering (SASView)

Download .zip or .tar.gz

These problems (also found in the folder examples/benchmark_problems/SAS_modelling/1D) are two data sets from
small angle scattering experiments. These are from fitting data to a cylinder, and have been supplied in the format that
SASView uses to process the data.

These have 6 unknown parameters, and fit to either 20 or 54 data points.

Warning: The external package sasmodels must be installed to run this data set. See Installing External Software
for details.

CUTESst (SIF files)

Download .zip or .tar.gz

This directory (also found in the folder examples/benchmark_problems/SIF) contain SIF files encoding least squares
problems from the CUTEst continuous optimization testing environment.

These are from a wide range of applications. They have between 2 and 9 unknown parameters, and for the most part fit
between 6 and 250 data points, although the VESUVIO examples (from the VESUVIO instrument at ISIS) have 1,025
data points (with 8 unknown parameters).

Warning: The external packages CUTEst and pycutest must be installed to run this data set. See Installing External
Software for details.

SIF_GO

Download .zip or .tar.gz

This directory (also found in the folder examples/benchmark_problems/SIF_GO) contains SIF files encoding least
squares problems from the CUTEst continuous optimization testing environment.

All of these problems have been modified, with finite bounds added for all parameters, making the problems appropriate
for testing global optimization solvers. The bounds that have been added to each problem are the same as those used
in SciPy’s global optimization benchmark functions.

These problems have between 3 and 7 unknown parameters, and fit between 9 and 37 data points.

Warning: The external packages CUTEst and pycutest must be installed to run this data set. See Installing External
Software for details.

34 Chapter 1. FitBenchmarking

https://www.sasview.org/docs/user/models/cylinder.html
https://www.sasview.org
https://github.com/ralna/SIFDecode
https://github.com/ralna/CUTEst
https://www.isis.stfc.ac.uk/Pages/Vesuvio.aspx
https://github.com/ralna/SIFDecode
https://github.com/ralna/CUTEst
https://github.com/scipy/scipy/tree/master/benchmarks/benchmarks/go_benchmark_functions

FitBenchmarking Documentation, Release 0.1.dev1

Simple tests

Download .zip or .tar.gz

This folder (also found in examples/benchmark_problems/simple_tests) contains a number of simple tests with known,
and easy to obtain, answers. We recommend that this is used to test any new minimizers that are added, and also that
any new parsers reimplement these data sets and models (if possible).

These problems have 3 or 4 unknown parameters, and around 100 data points.

FitBenchmarking Options

The default behaviour of FitBenchmarking can be changed by supplying an options file. The default values of these
options, and how to override them, are given in the pages below.

Fitting Options

Options that control the benchmarking process are set here.

Software (software)

Software is used to select the fitting software to benchmark, this should be a newline-separated list. Available options
are:

bumps (default software)

ceres (external software — see Installing External Software)

CUTEst (external software — see Installing External Software)

dfo (external software — see Extra dependencies)

gofit (external software — see Extra dependencies)

gradient_free (external software — see Extra dependencies)

gsl (external software — see Installing External Software)

horace (external software — see Installing External Software)

levmar (external software — see Extra dependencies)

Imfit (external software — see Extra dependencies)

mantid (external software — see Installing External Software)

matlab (external software — see Installing External Software)

matlab_curve (external software — see Installing External Software)

matlab_opt (external software — see Installing External Software)

matlab_stats (external software — see Installing External Software)

minuit (external software — see Extra dependencies)

nlopt (external software — see Extra dependencies)

ralfit (external software — see Installing External Software)

scipy (default software)

1.1. Table Of Contents 35

FitBenchmarking Documentation, Release 0.1.dev1

scipy_1s (default software)

scipy_go

theseus (external software — see Installing External Software)

Default software options are scipy and scipy_ls

[FITTING]
software: bumps

dfo
minuit
scipy
scipy_1ls
scipy_go

Warning: Software must be listed to be here to be run. Any minimizers set in Minimizer Options will not be run
if the software is not also present in this list.

Number of minimizer runs (num_runs)

Sets the number of runs to average each fit over.

Default is 5

[FITTING]
num_runs: 5

Algorithm type (algorithm_type)

This is used to select what type of algorithm is used within a specific software. For a full list of available minimizers
for each algorithm type, see Algorithm Types of Available Minimizers. The options are:

all - all minimizers
1s - least-squares fitting algorithms

deriv_free - derivative free algorithms (these are algorithms that cannot use information about derivatives —
e.g., the Simplex method in Mantid), see Derivative Free.

general - minimizers which solve a generic min f{x)

simplex - derivative free simplex based algorithms e.g. Nelder-Mead, see Simplex

trust_region - algorithms which employ a trust region approach, see Trust Region

levenberg-marquardt - minimizers that use the Levenberg Marquardt algorithm, see Levenberg-Marquardt.
gauss_newton - minimizers that use the Gauss Newton algorithm, see Gauss-Newton

bfgs - minimizers that use the BFGS algorithm, see BFGS

conjugate_gradient - Conjugate Gradient algorithms, see Conjugate Gradient

steepest_descent - Steepest Descent algorithms, see Steepest Descent

global_optimization - Global Optimization algorithms

36

Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Default is all

[FITTING]
algorithm_type: all

Warning: Choosing an option other than all may deselect certain minimizers set in the options file

Jacobian method (jac_method)

This sets the Jacobian used. Choosing multiple options via a new line seperated list will result in all combinations
being benchmarked. Current Jacobian methods are:

e analytic - uses the analytic Jacobian extracted from the fitting problem.

e scipy - uses SciPy’s finite difference Jacobian approximations.

e default - uses the default derivative approximation implemented in the minimizer.
* numdifftools - uses the python package numdifftools.

Default is default

[FITTING]
jac_method: scipy

Warning: Currently analytic Jacobians are only available for problems that use the cutest and NIST parsers.

Hessian method (hes_method)

This sets the Hessian used. Choosing multiple options via a new line seperated list will result in all combinations being
benchmarked. Current Hessian methods are:

e default - Hessian information is not passed to minimizers

* analytic - uses the analytic Hessian extracted from the fitting problem.
e scipy - uses SciPy’s finite difference approximations.

* numdifftools - uses the python package numdifftools.

Default is default

[FITTING]
hes_method: default

Warning: Currently analytic Hessians are only available for problems that use the cutest and NIST parsers.

1.1. Table Of Contents 37

FitBenchmarking Documentation, Release 0.1.dev1

Cost function (cost_func_type)

This sets the cost functions to be used for the given data. Choosing multiple options via a new line seperated list will
result in all combinations being benchmarked. Currently supported cost functions are:

* nlls - This sets the cost function to be non-weighted non-linear least squares, NLLSCostFunc.

* weighted_nlls - This sets the cost function to be weighted non-linear least squares, WeightedNLLSCostFunc.
e hellinger_nlls - This sets the cost function to be the Hellinger cost function, HellingerNLLSCostFunc.

¢ poisson - This sets the cost function to be the Poisson Deviation cost function, PoissonCostFunc.

Default is weighted_nlls

[FITTING]
cost_func_type: weighted_nlls

Maximum Runtime (max_runtime)

This sets the maximum runtime a minimizer has to solve one benchmark problem num_runs number of times, where
num_runs is another option a user can set. If the minimizer is still running after the maximum time has elapsed, then
this result will be skipped and FitBenchmarking will move on to the next minimizer / benchmark dataset combination.
The main purpose of this option is to get to result tables quicker by limit the runtime.

max_runtime is set by specifying a number in unit of seconds. Please note that depending on platform the time specified
with max_runtime may not match entirely with the absolute run-times specified in tables. Hence you may have to
experiment a bit with this option to get the cutoff you want.

Default is 600 seconds

[FITTING]
max_runtime: 600

Minimizer Options

This section is used to declare the minimizers to use for each fitting software. If a fitting software has been selected
in Fitting Options then a default set of minimizers for that solver will be run unless alternative minimizer options have
been set. All minimizers for a software are included on the default list of minimizers unless otherwise stated.

Warning: Options set in this section will only have an effect if the related software is also set in Fitting Options
(either explicitly, or as a default option).

38 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Bumps (bumps)

Bumps is a set of data fitting (and Bayesian uncertainty analysis) routines. It came out of the University of Maryland
and NIST as part of the DANSE (Distributed Data Analysis of Neutron Scattering Experiments) project.

FitBenchmarking currently supports the Bumps minimizers:
* Nelder-Mead Simplex (amoeba)
¢ Levenberg-Marquardt (1m-bumps) This is mpfit, a translation of MINPACK to Python.
* Quasi-Newton BFGS (newton)
¢ Differential Evolution (de)

e scipy’s leastsq (scipy-leastsq) This calls scipy’s Levenberg-Marquardt method. Note that this was the default
method for /m prior to Bumps v0.8.2.

* DiffeRential Evolution Adaptive Metropolis (dream)

Licence The main licence file for Bumps is here. Individual files have their own copyright and licence — if you plan to
incorporate this in your own software you should first check that the licences used are compatible.

Links GitHub - bumps

The Bumps minimizers are set as follows:

[MINIMIZERS]

bumps: amoeba
1m-bumps
newton
de
scipy-leastsq
dream

Warning: The additional dependency Bumps must be installed for this to be available; See Extra dependencies.

Note: de is not included in the default list of minimizers for bumps. To run this solver, you must explicitly set the
minimizer as seen above.

Ceres Solver (ceres)

Ceres Solver is an open source C++ library for modeling and solving large, complicated optimization problems. It can
be used to solve Non-linear Least Squares problems with bounds constraints and general unconstrained optimization
problems.

FitBenchmarking currently supports the Ceres Solver minimizers:
e Levenberg-Marquardt (Levenberg-Marquardt)
* Dogleg (Dogleg)
* Steepest Descent (steepest_descent)

* BFGS algorithm (BFGS)

LBFGS algorithm (LBFGS)

1.1. Table Of Contents 39

https://bumps.readthedocs.io
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#nelder-mead-simplex
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-lm
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#quasi-newton-bfgs
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#differential-evolution
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-lm
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#dream
https://github.com/bumps/bumps/blob/master/LICENSE.txt
https://github.com/bumps/bumps
http://ceres-solver.org/
http://ceres-solver.org/nnls_solving.html#levenberg-marquardt
http://ceres-solver.org/nnls_solving.html#dogleg
http://ceres-solver.org/nnls_solving.html#line-search-methods
http://ceres-solver.org/nnls_solving.html#line-search-methods
http://ceres-solver.org/nnls_solving.html#line-search-methods

FitBenchmarking Documentation, Release 0.1.dev1

 Fletcher-Reeves Non Linear Conjugate-Gradient (Fletcher_Reeves)
 Polak-Ribiere Non Linear Conjugate-Gradient (Polak_Ribiere)
* Hestenes-Stiefel Non Linear Conjugate-Gradient (Hestenes_Stiefel)
Licence Ceres Solver is available under the new BSD licence — details can be found here
Links Ceres Solver PyCeres - Ceres Python Bindings

The Ceres Solver minimizers are set as follows:

[MINIMIZERS]

ceres: Levenberg_Marquardt
Dogleg
BFGS
LBFGS

steepest_descent
Fletcher_Reeves
Polak_Ribiere
Hestenes_Stiefel

Warning: The additional dependency Ceres Solver must be installed for this to be available; See Extra dependen-
cies.

Note: The PyCeres currently only works with Ceres Solver versions 2.0.0

DFO (dfo)

There are two Derivative-Free Optimization packages, DFO-LS and DFO-GN. They are derivative free optimization
solvers that were developed by Lindon Roberts at the University of Oxford, in conjunction with NAG. They are partic-
ularly well suited for solving noisy problems.

FitBenchmarking currently supports the DFO minimizers:
* Derivative-Free Optimizer for Least Squares (dfols)
¢ Derivative-Free Gauss-Newton Solver (dfogn)

Licence Both DFO-GN and DFO-LS are available under the GPL-3 licence. A proprietary licence is also available
from NAG .

Links GitHub - DFO-GN GitHub - DFO-LS

The DFO minimizers are set as follows:

[MINIMIZERS]
dfo: dfols
dfogn

Warning: Additional dependencies DFO-GN and DFO-LS must be installed for these to be available; See Extra
dependencies.

40 Chapter 1. FitBenchmarking

http://ceres-solver.org/nnls_solving.html#line-search-methods
http://ceres-solver.org/nnls_solving.html#line-search-methods
http://ceres-solver.org/nnls_solving.html#line-search-methods
http://ceres-solver.org/license.html
http://ceres-solver.org/
https://github.com/Edwinem/ceres_python_bindings
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
https://github.com/numericalalgorithmsgroup/dfogn/blob/master/LICENSE.txt
https://github.com/numericalalgorithmsgroup/dfols/blob/master/LICENSE.txt
https://www.nag.com/content/worldwide-contact-information
https://github.com/numericalalgorithmsgroup/dfogn
https://github.com/numericalalgorithmsgroup/dfols

FitBenchmarking Documentation, Release 0.1.dev1

GOFit (gofit)

GOFit is a package of C++ algorithms with Python interfaces designed for the global optimization of parameters in
curve fitting, i.e. for nonlinear least-squares problems arising from curve fitting. It is also included with Mantid since
release 6.5.

FitBenchmarking currently supports the GOFit minimizers:

e Multistart Global Minimizer (multistart)

* Alternating Multistart Global Minimizer (alternating)

* Quadratic Regularisation Local Minimizer (regularisation)
Links Documentation
Licence GOFit is available under a 3-clause BSD Licence

The GOFit minimizers are set as follows:

[MINIMIZERS]

gofit: multistart
alternating
regularisation

Note: The alternating minimizer currently only supports Crystal Field problems.

Warning: The additional dependency GOFit must be installed to use these minimizers. See Extra dependencies.

Gradient-Free-Optimizers (gradient_free)

Gradient-Free-Optimizers are a collection of gradient-free methods capable of solving various optimization problems.
Please note that Gradient-Free-Optimizers must be run with problems that have finite bounds on all parameters.

 Hill Climbing (Hil1lClimbingOptimizer)

¢ Repulsing Hill Climbing (RepulsingHillClimbingOptimizer)

* Simulated Annealing (SimulatedAnnealingOptimizer)

¢ Random Search (RandomSearchOptimizer)

* Random Restart Hill Climbing (RandomRestartHillClimbingOptimizer)
* Random Annealing (RandomAnnealingOptimizer)

¢ Parallel Tempering (ParallelTemperingOptimizer)

¢ Particle Swarm (ParticleSwarmOptimizer)

* Evolution Strategy (EvolutionStrategyOptimizer)

e Bayesian (BayesianOptimizer)

¢ Tree Structured Parzen Estimators (TreeStructuredParzenEstimators)

¢ Decision Tree (DecisionTreeOptimizer)

1.1. Table Of Contents 41

https://github.com/ralna/GOFit
https://ralna.github.io/GOFit/
https://github.com/ralna/GOFit/blob/master/LICENSE
https://github.com/SimonBlanke/Gradient-Free-Optimizers

FitBenchmarking Documentation, Release 0.1.dev1

Licence The Gradient-Free-Optimizers package is available under an MIT Licence .

The gradient_free minimizers are set as follows:

[MINIMIZERS]

gradient_free: HillClimbingOptimizer
RepulsingHillClimbingOptimizer
SimulatedAnnealingOptimizer
RandomSearchOptimizer
RandomRestartHillClimbingOptimizer
RandomAnnealingOptimizer
ParallelTemperingOptimizer
ParticleSwarmOptimizer
EvolutionStrategyOptimizer
BayesianOptimizer
TreeStructuredParzenEstimators
DecisionTreeOptimizer

Warning: The additional dependency Gradient-Free-Optimizers must be installed for this to be available; See
Extra dependencies.

Note: BayesianOptimizer, TreeStructuredParzenEstimators and DecisionTreeOptimizer may be slow running and so
are not run by default when gradient_free software is selected. To run these minimizers you must explicity set them as
seen above.

GSL (gsl)

The GNU Scientific Library is a numerical library that provides a wide range of mathematical routines. We call GSL
using the pyGSL Python interface.

The GSL routines have a number of parameters that need to be chosen, often without default suggestions. We have
taken the values as used by Mantid.

We provide implementations for the following packages in the multiminimize and multifit sections of the library:
* Levenberg-Marquardt (unscaled) (1mder)
* Levenberg-Marquardt (scaled) (1msder)
e Nelder-Mead Simplex Algorithm (nmsimplex)
e Nelder-Mead Simplex Algorithm (version 2) (nmsimplex2)
* Polak-Ribiere Conjugate Gradient Algorithm (conjugate_pr)
 Fletcher-Reeves Conjugate-Gradient (conjugate_fr)
e The vector quasi-Newton BFGS method (vector_bfgs)
* The vector quasi-Newton BFGS method (version 2) (vector_bfgs2)
* Steepest Descent (steepest_descent)

Links SourceForge PyGSL

Licence The GNU Scientific Library is available under the GPL-3 licence .

42 Chapter 1. FitBenchmarking

https://github.com/SimonBlanke/Gradient-Free-Optimizers/blob/master/LICENSE
https://www.gnu.org/software/gsl/
https://sourceforge.net/projects/pygsl/
https://www.gnu.org/software/gsl/doc/html/multimin.html
https://www.gnu.org/software/gsl/doc/html/nls.html
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multifit__nlin.lmder
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multifit_nlin.lmsder
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.nmsimplex
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.nmsimplex2
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.conjugate_pr
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.conjugate_fr
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.vector_bfgs
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.vector_bfgs2
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.steepest_descent
http://pygsl.sourceforge.net/
https://www.gnu.org/licenses/gpl-3.0.html

FitBenchmarking Documentation, Release 0.1.dev1

The GSL minimizers are set as follows:

[MINIMIZERS]

gsl: lmsder
Imder
nmsimplex
nmsimplex2

conjugate_pr
conjugate_fr
vector_bfgs
vector_bfgs2
steepest_descent

Warning: The external packages GSL and pygsl must be installed to use these minimizers.

Horace (horace)

Horace is described as a suite of programs for the visiualization and analysis from time-of-flight neutron inelastic
scattering spectrometers. We currently support:

* Levenberg-Marquardt (1m-1sqr)

Licence Matlab must be installed to use Horace within FitBenchmarking, which is a proprietary product. Horace is
made available under the the GPL-3 licence.

[MINIMIZERS]
horace: 1lm-1lsqr

Note: If you have a non standard installation of Horace please set the HORACE_LOCATION (e.g on IDAaaS).

Warning: The Horace Toolbox and MATLAB must be installed for this to be available; see Installing External
Software.

Mantid (mantid)

Mantid is a framework created to manipulate and analyze neutron scattering and muon spectroscopy data. It has support
for a number of minimizers, most of which are from GSL.

* BFGS (BFGS)

* Conjugate gradient (Fletcher-Reeves) (Conjugate gradient (Fletcher-Reeves imp.))
* Conjugate gradient (Polak-Ribiere) (Conjugate gradient (Polak-Ribiere imp.))

e Damped GaussNewton (Damped GaussNewton)

* FABADA (FABADA)

* Levenberg-Marquardt algorithm (Levenberg-Marquardt)

1.1. Table Of Contents 43

https://pace-neutrons.github.io/Horace/
https://www.mathworks.com/pricing-licensing.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.mantidproject.org
https://docs.mantidproject.org/nightly/fitting/fitminimizers/BFGS.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/FletcherReeves.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/PolakRibiere.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/DampedGaussNewton.html
https://docs.mantidproject.org/nightly/concepts/FABADA.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/LevenbergMarquardt.html

FitBenchmarking Documentation, Release 0.1.dev1

* Levenberg-Marquardt MD (Levenberg-MarquardtMD) - An implementation of Levenberg-Marquardt intended
for MD workspaces, where work is divided into chunks to achieve a greater efficiency for a large number of data
points.

* Simplex (Simplex)
» SteepestDescent (SteepestDescent)
* Trust Region (Trust Region) - An implementation of one of the algorithms available in RALFit.
Links GitHub - Mantid Mantid’s Fitting Docs
Licence Mantid is available under the GPL-3 licence .

The Mantid minimizers are set as follows:

[MINIMIZERS]

mantid: BFGS
Conjugate gradient (Fletcher-Reeves imp.)
Conjugate gradient (Polak-Ribiere imp.)
Damped GaussNewton
FABADA
Levenberg-Marquardt
Levenberg-MarquardtMD
Simplex
SteepestDescent
Trust Region

Warning: The external package Mantid must be installed to use these minimizers.

Levmar (levmar)

The levmar package which implements the Levenberg-Marquardt method for nonlinear least-squares. We interface via
the python interface available on PyPIL.

* Levenberg-Marquardt with supplied Jacobian (1evmar) - the Levenberg-Marquardt method

Licence Levmar is available under the GPL-3 licence . A paid licence for proprietary commerical use is available from
the author .

The levmar minimizer is set as follows:

[MINIMIZERS]
levmar: levmar

Warning: The additional dependency levmar must be installed for this to be available; See Extra dependencies.
This package also requires the BLAS and LAPACK libraries to be present on the system.

44 Chapter 1. FitBenchmarking

https://docs.mantidproject.org/nightly/fitting/fitminimizers/LevenbergMarquardtMD.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/Simplex.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/GradientDescent.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/TrustRegion.html
https://github.com/mantidproject/mantid
https://docs.mantidproject.org/nightly/algorithms/Fit-v1.html
https://github.com/mantidproject/mantid/blob/master/LICENSE.txt
http://users.ics.forth.gr/~lourakis/levmar/
https://pypi.org/project/levmar/
http://www.gnu.org/copyleft/gpl.html
http://users.ics.forth.gr/~lourakis/levmar/faq.html#Q37
http://users.ics.forth.gr/~lourakis/levmar/faq.html#Q37

FitBenchmarking Documentation, Release 0.1.dev1

LMFIT (1mfit)

The Imfit package provides simple tools to help you build complex fitting models for non-linear least-squares problems
and apply these models to real data. Lmfit provides a high-level interface to non-linear optimization and curve fitting
problems for Python. It builds on and extends many of the optimization methods of scipy.optimize.

Levenberg-Marquardt (leastsq)

Least-Squares minimization, using Trust Region Reflective method (least_squares)
Differential evolution (differential_evolution)

Adaptive Memory Programming for Global Optimization (ampgo)
Nelder-Mead (nelder)

L-BFGS-B (1b£fgsb)

Powell (powell)

Conjugate-Gradient (cg)

Newton-CG (newton)

Cobyla (cobyla)

BFGS (bfgs)

Truncated Newton (tnc)

Newton-CG trust-region (trust-ncg)

Nearly exact trust-region (trust-exact)

Newton GLTR trust-region (trust-krylov)

Trust-region for constrained optimization (trust-constr)
Dog-leg trust-region (dogleg)

Sequential Linear Squares Programming (s1sqp)

Maximum likelihood via Monte-Carlo Markov Chain (emcee)
Simplicial Homology Global Optimization (shgo)

Dual Annealing optimization (dual_annealing)

Licence LMFIT is available the new BSD-3 licence — details can be found here

The Imfit minimizer is set as follows:

[MINIMIZERS]
Imfit: differential_evolution

powell

cobyla

slsqgp

emcee

nelder
least_squares
trust-ncg
trust-exact
trust-krylov
trust-constr

(continues on next page)

1.1. Table Of Contents 45

https://lmfit.github.io/lmfit-py/index.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://emcee.readthedocs.io/en/stable/
https://lmfit.github.io/lmfit-py/installation.html#copyright-licensing-and-re-distribution

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

dogleg

leastsq
newton

tnc

1lbfgsb

bfgs

cg

ampgo

shgo
dual_annealing

Note: The shgo solver is particularly slow running and should generally be avoided. As a result, this solver is not run
by default when /mfit software is selected. In order to run this minimizer, you must explicitly set it as above.

Warning: emcee uses a Markov Chain Monte Carlo package and assumes that the prior is Uniform. This may not
perform well for certain fitting problems.

Matlab (matlab)

We call the fminsearch function from MATLAB, using the MATLAB Engine API for Python.
¢ Nelder-Mead Simplex (Nelder-Mead Simplex)
Licence Matlab is a proprietary product .

The matlab minimizer is set as follows:

[MINIMIZERS]
matlab: Nelder-Mead Simplex

Warning: MATLAB must be installed for this to be available; See Installing External Software.

Matlab Curve Fitting Toolbox (matlab_curve)

We call the fit function from the MATLAB Curve Fitting Toolbox, using the MATLAB Engine API for Python.
* Levenberg-Marquardt (Levenberg-Marquardt)
* Trust-Region (Trust-Region)

Licence Matlab and the Curve Fitting Toolbox are both proprietary products .

The matlab_curve minimizers are set as follows:

[MINIMIZERS]
matlab_curve: Levenberg-Marquardt
Trust-Region

46 Chapter 1. FitBenchmarking

https://uk.mathworks.com/help/matlab/ref/fminsearch.html
https://uk.mathworks.com/products/matlab.html
https://www.mathworks.com/pricing-licensing.html
https://uk.mathworks.com/help/curvefit/fit.html
https://uk.mathworks.com/help/curvefit/index.html
https://www.mathworks.com/pricing-licensing.html

FitBenchmarking Documentation, Release 0.1.dev1

Warning: MATLAB Curve Fitting Toolbox must be installed for this to be available; See Installing External
Software.

Matlab Optimization Toolbox (matlab_opt)

We call the Isqcurvefit function from the MATLAB Optimization Toolbox, using the MATLAB Engine API for Python.
* Levenberg-Marquardt (levenberg-marquardt)
 Trust-Region-Reflective (trust-region-reflective)

Licence Matlab and the Optimization Toolbox are both proprietary products .

The matlab_opt minimizers are set as follows:

[MINIMIZERS]
matlab_opt: levenberg-marquardt
trust-region-reflective

Warning: MATLAB Optimization Toolbox must be installed for this to be available; See Installing External
Software.

Matlab Statistics Toolbox (matlab_stats)

We call the nlinfit function from the MATLAB Statistics Toolbox, using the MATLAB Engine API for Python.
* Levenberg-Marquardt (Levenberg-Marquardt)
Licence Matlab and the Statistics Toolbox are both proprietary products .

The matlab_stats minimizer is set as follows:

[MINIMIZERS]
matlab_stats: Levenberg-Marquardt

Warning: MATLAB Statistics Toolbox must be installed for this to be available; See Installing External Software.

Minuit (minuit)

CERN developed the Minuit 2 package to find the minimum value of a multi-parameter function, and also to compute
the uncertainties. We interface via the python interface iminuit with support for the 2.x series.

e Minuit’s MIGRAD (migrad)
e Minuit’s SIMPLEX (simplex)
Links Github - iminuit
Licence iminuit is released under the MIT licence, while Minuit 2 is LGPL v2 .

The Minuit minimizers are set as follows:

1.1. Table Of Contents 47

https://uk.mathworks.com/help/optim/ug/lsqcurvefit.html
https://uk.mathworks.com/products/optimization.html
https://www.mathworks.com/pricing-licensing.html
https://uk.mathworks.com/help/stats/nlinfit.html
https://uk.mathworks.com/products/statistics.html
https://www.mathworks.com/pricing-licensing.html
https://root.cern.ch/doc/master/Minuit2Page.html
https://iminuit.readthedocs.io
https://iminuit.readthedocs.io/en/stable/reference.html#iminuit.Minuit.migrad
https://iminuit.readthedocs.io/en/stable/reference.html#iminuit.Minuit.simplex
https://github.com/scikit-hep/iminuit
https://github.com/scikit-hep/iminuit/blob/develop/LICENSE
https://github.com/root-project/root/blob/master/LICENSE

FitBenchmarking Documentation, Release 0.1.dev1

[MINIMIZERS]
minuit: migrad
simplex

Warning: The additional dependency Minuit must be installed for this to be available; See Extra dependencies.

NLopt (nlopt)

NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different
free optimization routines available online as well as original implementations of various other algorithms

* Bound Optimization BY Quadratic Approximation (LN_BOBYQA)

* NEW Unconstrained Optimization Algorithm (LN_NEWUOA)

* NEW Unconstrained Optimization Algorithm, bound algorithm (LN_NEWUOA_BOUND)
* Principal-axis method (LN_PRAXIS)

* Sequential Least Squares Programming (LD_SLSQP)

* Shifted limited-memory variable-metric (rank 1) (LD_VAR1)

* Shifted limited-memory variable-metric (rank 2) (LD_VAR2)

* Augmented Lagrangian local (AUGLAG)

* Augmented Lagrangian local (equality constraints) (AUGLAG_EQ)

* Nelder-Mead Simplex (LN_NELDERMEAD)

* Subplex (LN_SBPLX)

* Constrained Optimization BY Linear Approximations (LN_COBYLA)

» Conservative convex separable approximation (LD_CCSAQ)

* Method of Moving Asymptotes (LD_MMA)

¢ Newton (LD_TNEWTON)

* Newton preconditioned by the low-storage BFGS algorithm (LD_TNEWTON_PRECOND)
* Newton with steepest-descent restarting (LD_TNEWTON_RESTART)

e Newton preconditioned by the low-storage BFGS algorithm with steepest-descent restarting
(LD_TNEWTON_PRECOND_RESTART)

* LBFGS, and derivative-free algorithm (LD_LBFGS)

* Dlviding RECTangles (GN_DIRECT)

* DIviding RECTangles (locally biased) (GN_DIRECT_L)

* Dlviding RECTangles (locally biased which uses some randomization) (GN_DIRECT_L_RAND)
* DIviding RECTangles (unscaled variant) (GNL_DIRECT_NOSCAL)

* DIviding RECTangles (locally biased and unscaled variant) (GN_DIRECT_L_NOSCAL)

e DIviding RECTangles (locally biased, unscaled variant which wuses some randomization)
(GN_DIRECT_L_RAND_NOSCAL)

48 Chapter 1. FitBenchmarking

https://nlopt.readthedocs.io/en/latest/

FitBenchmarking Documentation, Release 0.1.dev1

DIviding RECTangles (based on the original Fortran code by Gablonsky et al. (1998-2001)) (GN_ORIG_DIRECT)

Dlviding RECTangles (based on the original Fortran code by Gablonsky et al. (1998-2001) and locally biased)
(GN_ORIG_DIRECT_L)

Controlled Random Search (GN_CRS2_LN)

Multi-Level Single-Linkage, low-discrepancy sequence (G_MLSL_LDS)
Multi-Level Single-Linkage (G_MLSL)

Stochastic Global Optimization (GD_STOGO)

Stochastic Global Optimizatiom, randomized variant (GD_STOGO_RAND)
AGS (GN_AGS)

Improved Stochastic Ranking Evolution Strategy (GN_ISRES)

The Nlopt minimizers are set as follows:

[MINIMIZERS]
nlopt: LN_BOBYQA

LN_NEWUOA
LN_NEWUOA_BOUND
LN_PRAXIS

LD_SLSQP

LD_VAR2

LD_VAR1

AUGLAG

AUGLAG_EQ
LN_NELDERMEAD
LN_SBPLX

LN_COBYLA
LD_CCSAQ

LD_MMA
LD_TNEWTON_PRECOND_RESTART
LD_TNEWTON_PRECOND
LD_TNEWTON_RESTART
LD_TNEWTON
LD_LBFGS

GN_DIRECT
GN_DIRECT_L
GN_DIRECT_L_RAND
GNL_DIRECT_NOSCAL
GN_DIRECT_L_NOSCAL
GN_DIRECT_L_RAND_NOSCAL
GN_ORIG_DIRECT
GN_ORIG_DIRECT_L
GN_CRS2_LM
G_MLSL_LDS

G_MLSL

GD_STOGO
GD_STOGO_RAND
GN_AGS

GN_ISRES

Note:

The global optimization solvers are not run by default when nlopt software is selected. In order to run these

1.1. Table Of Contents 49

FitBenchmarking Documentation, Release 0.1.dev1

minimizers, you must explicitly set them as above.

Note: The following 4 minimizers need a local optimizer selected to run. This has been set to use LD_LBFGS.

[MINIMIZERS]

nlopt: AUGLAG
AUGLAG_EQ
G_MLSL_LDS
G_MLSL

RALFit (ralfit)

RALFit is a nonlinear least-squares solver, the development of which was funded by the EPSRC grant Least-Squares:
Fit for the Future. RALFit is designed to be able to take advantage of higher order derivatives, although only first order
derivatives are currently utilized in FitBenchmarking.

* Gauss-Newton, trust region method (gn)

* Hybrid Newton/Gauss-Newton, trust region method (hybrid)
* Newton, trust region method (newton)

* Newton-tensor, trust region method (newton-tensor)

* Gauss-Newton, regularization (gn_reg)

* Hybrid Newton/Gauss-Newton, regularization (hybrid_reg)
» Newton, regularization (newton_reg)

* Newton-tensor, regularization (newton-tensor_reg)

Note that the Newton-tensor methods take significantly longer than the other options to run (but may give a better
solution in some cases). For this reason, they are not included in the default minimizers for RALFit, but must be turned
on in the options file.

Links Github - RALFit. RALFit’s Documentation on: Gauss-Newton/Hybrid models, the trust region method and The
regularization method

Licence RALFit is available under a 3-clause BSD Licence

The RALFit minimizers are set as follows:

[MINIMIZERS]
ralfit: gn
gn_reg
hybrid
hybrid_reg

Warning: The external package RALFit must be installed to use these minimizers.

50 Chapter 1. FitBenchmarking

https://ralfit.readthedocs.io/projects/Fortran/en/latest/
https://github.com/ralna/ralfit/
https://ralfit.readthedocs.io/projects/Fortran/en/latest/method.html#the-models
https://ralfit.readthedocs.io/projects/Fortran/en/latest/method.html#the-trust-region-method
https://ralfit.readthedocs.io/projects/C/en/latest/method.html#regularization
https://ralfit.readthedocs.io/projects/C/en/latest/method.html#regularization
https://github.com/ralna/RALFit/blob/master/LICENCE

FitBenchmarking Documentation, Release 0.1.dev1

SciPy (scipy)

SciPy is the standard python package for mathematical software. In particular, we use the minimize solver for general
minimization problems from the optimization chapter of SciPy’s library. Currently we only use the algorithms that do
not require Hessian information as inputs.

* Nelder-Mead algorithm (Nelder-Mead)
* Powell algorithm (Powell)
* Conjugate gradient algorithm (CG)
* BFGS algorithm (BFGS)
* Newton-CG algorithm (Newton-CG)
¢ L-BFGS-B algorithm (L-BFGS-B)
 Truncated Newton (TNC) algorithm (TNC)
» Sequential Least SQuares Programming (SLSQP)
* Constrained Optimization BY Linear Approximations (COBYLA)
* Newton-CG trust-region (trust-ncg)
* Nearly exact trust-region (trust-exact)
» Newton Generalized Lanczos Trust Region (trust-krylov)
e Trust-region for constrained optimization (trust-constr)
* Dog-leg trust-region (dogleg)
Links Github - SciPy minimize

Licence Scipy is available under a 3-clause BSD Licence. Individual packages may have their own (compatible)
licences, as listed here.

The SciPy minimizers are set as follows:

[MINIMIZERS]

scipy: Nelder-Mead
Powell
CG
BFGS
Newton-CG
L-BFGS-B
TNC
SLSQP
COBYLA
trust-ncg
trust-exact
trust-krylov
trust-constr
dogleg

Note: The Hessian enabled solvers are not run by default when scipy software is selected. In order to run these
minimizers, you must explicitly set them as above.

1.1. Table Of Contents 51

https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-newtoncg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-tnc.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustncg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustexact.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustkrylov.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-dogleg.html
https://github.com/scipy/scipy/blob/master/scipy/optimize/_minimize.py
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/scipy/scipy/blob/master/LICENSES_bundled.txt

FitBenchmarking Documentation, Release 0.1.dev1

SciPy LS (scipy_1s)

SciPy is the standard python package for mathematical software. In particular, we use the least_squares solver for
Least-Squares minimization problems from the optimization chapter of SciPy’s library.

* Levenberg-Marquardt with supplied Jacobian (1m-scipy) - a wrapper around MINPACK
* The Trust Region Reflective algorithm (trf)
¢ A dogleg algorithm with rectangular trust regions (dogbox)

Links Github - SciPy least_squares

Licence Scipy is available under a 3-clause BSD Licence. Individual packages many have their own (compatible)
licences, as listed here.

The SciPy least squares minimizers are set as follows:

[MINIMIZERS]

scipy_ls: lm-scipy
trf
dogbox

SciPy GO (scipy_go)

SciPy is the standard python package for mathematical software. In particular, we use the Global Optimization solvers
for global optimization problems from the optimization chapter of SciPy’s library.

¢ Differential Evolution (derivative-free) (differential_evolution)
* Simplicial Homology Global Optimization (SHGO) (shgo)
* Dual Annealing (dual_annealing)

Links Github - SciPy optimization

Licence Scipy is available under a 3-clause BSD Licence. Individual packages may have their own (compatible)
licences, as listed here.

The SciPy global optimization minimizers are set as follows:

[MINIMIZERS]
scipy_go: differential_evolution
shgo

dual_annealing

Note: The shgo solver is particularly slow running and should generally be avoided. As a result, this solver is not run
by default when scipy_go software is selected. In order to run this minimizer, you must explicitly set it as above.

52 Chapter 1. FitBenchmarking

https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://github.com/scipy/scipy/blob/master/scipy/optimize/_lsq/least_squares.py
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/scipy/scipy/blob/master/LICENSES_bundled.txt
https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/optimize.html#global-optimization
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.shgo.html#scipy.optimize.shgo
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html#scipy.optimize.dual_annealing
https://github.com/scipy/scipy/blob/master/scipy/optimize/
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/scipy/scipy/blob/master/LICENSES_bundled.txt

FitBenchmarking Documentation, Release 0.1.dev1

Theseus (theseus)

Theseus is an efficient application-agnostic library for building custom nonlinear optimization layers in PyTorch to
support constructing various problems in robotics and vision as end-to-end differentiable architectures.

* Levenberg Marquardt (Levenberg_Marquardt)
¢ Gauss Newton (Gauss-Newton)

Links Paper- Theseus optimization

Licence Theseus is available under a MIT licence.

The theseus minimizers are set as follows:

[MINIMIZERS]
theseus: Levenberg_Marquardt
Gauss-Newton

Note: We strongly recommend you install Theseus in a venv or conda environment with Python 3.7-3.9

Jacobian Options

The Jacobian section allows you to control which methods for computing Jacobians the software uses.

Analytic (analytic)
Analytic Jacobians can only be used for specific Problem Definition Files. Currently the supported formats are cutest
and NIST. The only option is:

* default - use the analytic derivative provided by a supported format.

Default is default

[JACOBIAN]
analytic: default

SciPy (scipy)

Calculates the Jacobian using the numerical Jacobian in SciPy, this uses scipy.optimize._numdiff.
approx_derivative. The supported options are:

e 2-point - use the first order accuracy forward or backward difference.

* 3-point - use central difference in interior points and the second order accuracy forward or backward difference
near the boundary.

e cs - use a complex-step finite difference scheme. This assumes that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise, produces bogus results.

Default is 2-point

Licence SciPy is available under a 3-clause BSD Licence. Individual packages may have their own (compatible)
licences, as listed here.

1.1. Table Of Contents 53

https://sites.google.com/view/theseus-ai/
https://arxiv.org/pdf/2207.09442.pdf/
https://github.com/facebookresearch/theseus/blob/main/LICENSE
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/scipy/scipy/blob/master/LICENSES_bundled.txt

FitBenchmarking Documentation, Release 0.1.dev1

[JACOBIAN]
scipy: 2-point

Solver Default Jacobian (default)

This uses the approximation of the Jacobian that is used by default in the minimizer, and will vary between solvers. If
the minimizer requires the user to pass a Jacobian, a warning will be printed to the screen and the SciPy (scipy) 2-point
approximation will be used. The only option is:

e default - use the default derivative approximation provided by the software.

Default is default

[JACOBIAN]
default: default

Numdifftools (numdifftools)

Calculates the Jacobian using the python package numdifftools. We allow the user to change the method used, but
other options (e.g, the step size generator and the order of the approximation) are set the defaults. The supported options
are:

» central - central differencing. Almost as accurate as complex, but with no restriction on the type of function.
e forward - forward differencing.
* backward - backward differencing.

» complex - based on the complex-step derivative method of Lyness and Moler. Usually the most accurate, pro-
vided the function is analytic.

* multicomplex - extends complex method using multicomplex numbers. (see, e.g., Lantoine, Russell, Dargent
(2012)).

Default is central.

Licence numdifftools is available under a 3-clause BSD Licence.

[JACOBIAN]
numdifftools: central

Hessian Options

The Hessian section allows you to control which methods for computing Hessians the software uses.

54 Chapter 1. FitBenchmarking

http://epubs.siam.org/doi/abs/10.1137/0704019
https://dl.acm.org/doi/10.1145/2168773.2168774
https://dl.acm.org/doi/10.1145/2168773.2168774
https://github.com/pbrod/numdifftools/blob/master/LICENSE.txt

FitBenchmarking Documentation, Release 0.1.dev1

Analytic (analytic)

Analytic Hessians can only be used for specific Problem Definition Files. Currently the supported formats are cutest
and NIST. The only option is:

e default - use the analytic derivative provided by a supported format.

Default is default

[HESSIAN]
analytic: default

SciPy (scipy)

Calculates the Hessian from the Jacobian using the finite differencing in SciPy, this uses scipy.optimize._numdiff.
approx_derivative. The supported options are:

e 2-point - use the first order accuracy forward or backward difference.

* 3-point - use central difference in interior points and the second order accuracy forward or backward difference
near the boundary.

* cs - use a complex-step finite difference scheme. This assumes that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise, produces bogus results.

Default is 2-point

Licence SciPy is available under a 3-clause BSD Licence. Individual packages may have their own (compatible)
licences, as listed here.

[HESSIAN]
scipy: 2-point

Default Hessian (default)

Hessian information is not passed to minimizers. The only option is:
* default - don’t pass Hessian information to minimizers.

Default is default

[HESSIAN]
default: default

Numdifftools (numdifftools)

Calculates the Hessian from the Jacobian using the python package numdifftools. We allow the user to change the
method used, but other options (e.g, the step size generator and the order of the approximation) are set to the defaults.
The supported options are:

* central - central differencing. Almost as accurate as complex, but with no restriction on the type of function.
e forward - forward differencing.

* backward - backward differencing.

1.1. Table Of Contents 55

https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/scipy/scipy/blob/master/LICENSES_bundled.txt

FitBenchmarking Documentation, Release 0.1.dev1

e complex - based on the complex-step derivative method of Lyness and Moler. Usually the most accurate, pro-
vided the function is analytic.

* multicomplex - extends complex method using multicomplex numbers. (see, e.g., Lantoine, Russell, Dargent
(2012)).

Default is central.

Licence numdifftools is available under a 3-clause BSD Licence.

[HESSTIAN]
numdifftools: central

Output Options

The output section contains options to control how results are outputted and presented.

Results directory (results_dir)

This is used to select where the output should be saved. If the results directory command line argument is provided,
this option is overridden.

Default is fitbenchmarking results

[OUTPUT]
results_dir: fitbenchmarking_results

Make plots (make_plots)

This allows the user to decide whether or not to create plots during runtime. Toggling this to False will be much faster
on large data sets.

Default is True (yes/no can also be used)

[OUTPUT]
make_plots: yes

Colourmap (colour_map)

Specifies the name of the colourmap the user wishes to use, e.g. magma, viridis, OrRd. Options are:
* Any colourmap from the library in matplotlib, see the complete library here.
* Appending _r to the end of the name will reverse the colourmap.
* The following sequential colourmaps are recommended:

Default colourmap is magma_r

[OUTPUT]
colour_map: magma_r

56 Chapter 1. FitBenchmarking

http://epubs.siam.org/doi/abs/10.1137/0704019
https://dl.acm.org/doi/10.1145/2168773.2168774
https://dl.acm.org/doi/10.1145/2168773.2168774
https://github.com/pbrod/numdifftools/blob/master/LICENSE.txt
https://matplotlib.org/stable/gallery/color/colormap_reference.html

FitBenchmarking Documentation, Release 0.1.dev1

"viridis_r" [0.2, 0.8]
"plasma_r" [0.2, 0.8]
"inferno_r" [0.2, 0.8]
"magma_r" [0.2, 0.8]

“cividis_r" [0.2, 0.8]

"Greys" [0.35, 0.9]
"Purples" [0.35, 0.9]
"Blues" [0.35, 0.9]
"Greens" [0.35, 0.9]
'‘Oranges” [0.35, 0.9]
"Reds" [0.35, 0.9]
"YIOrBr" [0.35, 0.9]
"YIOrRd" [0.35, 0.9]
"OrRd" [0.35, 0.9]
"PuRd" [0.35, 0.9]
"RdPu" [0.35, 0.9]
"BuPu" [0.35, 0.9]
"GnBu" [0.35, 0.9]
"PuBu" [0.35, 0.9]
"YIGnBu" [0.35, 0.9]
"PuBuGn" [0.35, 0.9]
"BuGn" [0.35, 0.9]
"YIGn" [0.35, 0.9]

Perceptually Uniform Sequential

Worst
Worst
Worst
Worst
test-test-test-test-test-test-test-test-test-test-test-

test-test-test-test-test Rkl

Sequential

Best Worst

Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst
Best Worst

Best Worst

1.1. Table Of Contents

57

FitBenchmarking Documentation, Release 0.1.dev1

Colourmap Range (cmap_range)

A two-element list used to specify the lower and upper limit of the chosen colourmap. Options are:

* [lower_limit, upper_limit] where limits consider the full colourscale limits to be 0 and 1, so any pair of
values must fall within this range.

* Limits should be introduced to make the white text readable, see the following example.

colour_map: "magma", cmap_range: [0, 1]
sl test-test-test-test-test-test-test-test-test-test-test-test-test-test-testtes Worst

colour map: "magma", cmap_range: [0.2, 0.8]
e test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test Worst

colour map: "magma _r", cmap_range: [0, 1]
Best SSt{est testtest-test-test-test-test-test-test-test-test-test-test-test-test [UGIEe

colour_map: "magma_r", cmap_range: [0.2, 0.8]
Best Lest test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test-test RiloIgs

Default for magma is [0.2, 0.8] (suitability depends on colourmap)

[OUTPUT]
colour_map: magma_r
cmap_range: [0.2, 0.8]

Colour Upper Limit (colour_ulim)

Controls how relatively poorly a minimizer has to perform in order to receive the worst colour. For example, a value of
100 would mean that any performance greater than or equal to 100 times worse than the best minimizer would receive
the worst colour. This ensures that colour scale is not compromised by especially poor relative results. Options are:

* Any float between 1 and np.inf
* Recommended value 100

Default is 100

[OUTPUT]

colour_map: magma_r
cmap_range: [0.2, 0.8]
colour_ulim: 100

58 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Comparison mode (comparison_mode)

This selects the mode for displaying values in the resulting table options are abs, rel, both:

abs indicates that the absolute values should be displayed

¢ rel indicates that the values should all be relative to the best result

¢ both will show data in the form “abs (rel)”

Default is both

[OUTPUT]
comparison_mode: both

Table type (table_type)

This selects the types of tables to be produced in FitBenchmarking. Options are:

acc indicates that the resulting table should contain the chi squared values for each of the minimizers.
runtime indicates that the resulting table should contain the runtime values for each of the minimizers.

compare indicates that the resulting table should contain both the chi squared value and runtime value for each
of the minimizers. The tables produced have the chi squared values on the top line of the cell and the runtime on
the bottom line of the cell.

local_min indicates that the resulting table should return true if a local minimum was found, or false otherwise.

The value of H“]:""H for those parameters is also returned. The output looks like {bool} (norm_value), and

the colouring is red for false and cream for true. This option is only meaningful for least-squares cost functions.

emissions indicates that the resulting table should contain the CO, emissions for each of the minimizers.

Default is acc, runtime, compare, local_min, and emissions.

[OUTPUT]
table_type: acc

runtime
compare
local_min
emissions

Logging Options

The logging section contains options to control how fitbenchmarking logs information.

1.1. Table Of Contents 59

FitBenchmarking Documentation, Release 0.1.dev1

Logging file name (file_name)

This specifies the file path to write the logs to.
Default is fitbenchmarking.log

[LOGGING]
file_name: fitbenchmarking.log

Logging append (append)

This specifies whether to log in append mode or not. If append mode is active, the log file will be extended with each
subsequent run, otherwise the log will be cleared after each run.

Default is False (yes/no can also be used)

[LOGGING]
append: no

Logging level (level)

This specifies the minimum level of logging to display on console during runtime. Options are (from most logging to
least):

* NOTSET
* DEBUG
¢ INFO

WARNING
¢ ERROR
e CRITICAL
Default is INFO

[LOGGING]
level: INFO

Logging external output (external_output)

This selects the amount of information displayed from third-parties. There are 3 options:
e display: Print information from third-parties to the stdout stream during a run.
* log_only: Print information to the log file but not the stdout stream.
* debug: Do not intercept third-party use of output streams.

Default is log_only

[LOGGING]
append: log_only

60 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

The options file must be a . ini formatted file (see here). Some example files can be found in the examples folder of
the source, which is also available to download at Benchmark problems.

Problem Definition Files
In FitBenchmarking, problems can be defined using several file formats. The examples/benchmark_problems di-
rectory holds a collection of these that can be used for reference.

More information on the supported formats can be found on the following pages.

CUTESst File Format

The CUTE:st file format in FitBenchmarking is a slight modification of the SIF format. Specifically, the data points,
errors, and the number of variables must be defined in such a way to allow FitBenchmarking to access this data; see
below. In FitBenchmarking, all SIF files are assumed to be CUTEst problems.

These problems are a subset of the problems in the CUTEr/st Test Problem Set, which may have been adapted to work
with FitBenchmarking.

The SIF file format is very powerful, and CUTEst will work with arbitrary variable names, however for FitBenchmark-
ing, these must match a set of expected variable names.

Licence This file format needs PyCUTEst and the packages ARCHDefs, CUTEst and SIFDECODE to be installed.
PyCUTEst is available under the GPL-3 licence. ARCHDEFS, CUTEst and SIFDECODE are available under an LGPL
(v2.1 or later) licence.

Modifications to the SIF format for FitBenchmarking problems

In order for FitBenchmarking to access the data, the SIF files must be written using the following conventions.

Defining Data

Data should be defined using the format:

RE X<idx> <val_x>
RE Y<idx> <val_y>
RE E<idx> <val_error>

where <idx> is the index of the data point, and <val_x>, <val_y>, and <val_error> are the values attributed to it.

Usually, <idx> will range from 1 to <num_x>, with that defined as:

IE M <num_x>

If <idx> does not start at 1, the following lines can be used to specify the range:

IE MLOWER <min_idx>
IE MUPPER <max_idx>

1.1. Table Of Contents 61

https://docs.python.org/3/library/configparser.html#supported-ini-file-structure
http://www.numerical.rl.ac.uk/lancelot/sif/sif.html
http://www.cuter.rl.ac.uk/Problems/mastsif.shtml
https://github.com/jfowkes/pycutest/blob/master/LICENSE
https://github.com/ralna/ARCHDefs/blob/master/LICENSE
https://github.com/ralna/CUTEst/blob/master/LICENSE
https://github.com/ralna/SIFDecode/blob/master/LICENSE

FitBenchmarking Documentation, Release 0.1.dev1

Defining Variables

For the free variables in functions, we use the convention:

IE N <num_vars>

This is used to tell FitBenchmarking how many degrees of freedom we need to fit. In some cases variables will be
vectors, and the number of degrees of freedom will be greater, most problems use NVEC as a convention to input the
number of vectors.

Support for Bounds

Parameter ranges can be added to SIF files using the BOUNDS indicator card.

Currently in Fitbenchmarking, problems with parameter ranges can be handled by SciPy, Bumps, Minuit, Mantid,
Matlab Optimization Toolbox, DFO, Levmar and RALFit fitting software. Please note that the following Mantid min-
imizers currently throw an exception when parameter ranges are used: BFGS, Conjugate gradient (Fletcher-Reeves
imp.), Conjugate gradient (Polak-Ribiere imp.) and SteepestDescent.

Native File Format

In FitBenchmarking, the native file format is used to read IVP, Mantid, and SASView problems.

In this format, data is separated from the function. This allows running the same dataset against multiple different
models to assess which is the most appropriate.

Examples of native problems are:

Fitbenchmark Problem

software = 'ivp'

name = 'Lorentz'

description = 'A simple lorentz system for testing the ivp parser. Exact results should.
—be 10, 28, 8/3.'

input_file = 'lorentz3d.txt'

function = 'module=functions/lorentz, func=lorentz3d,step=0.1,sigma=11,r=30,b=3"'

plot_scale = 'linear'

FitBenchmark Problem#

software = 'Mantid'

name = 'HIFI 113856

description = 'An example of (full) detector calibration for the HIFI instrument'
input_file = 'HIFIgrouped_113856.txt"'

function = 'name=FlatBackground,A0=0;name=DynamicKuboToyabe,BinWidth=0.

- 050000000000000003,Asym=0.2,Delta=0.2,Field=0,Nu=0.1"'
fit_ranges = {'x': [0.1, 16]}

FitBenchmark Problem

software = 'SASView'
name = '1D cylinder (synthetic neutron) IVQ'
description = 'A first iteration synthetic dataset generated for the 1D cylinder SASView.

—model in the fashion of neutron small angle scattering experiments. Generated on Fri._
—May 28 10:31:19 2021.'

(continues on next page)

62 Chapter 1. FitBenchmarking

https://www.numerical.rl.ac.uk/lancelot/sif/node26.html

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

input_£file = '1D_cylinder_20_400_nosmearing_neutron_synth.txt'

function = 'name=cylinder,radius=35.0,length=350.0,background=0.0,scale=1.0,s1d=4.0,sld_
—solvent=1.0"'

plot_scale = 'loglog'

These examples show the basic structure in which the file starts with a comment indicating it is a FitBenchmark problem
followed by key-value pairs. Available keys are described below:

software Either ‘IVP’, ‘Mantid’, ‘SasView’, or ‘Horace’ (case insensitive).

This defines whether to use an IVP format, Mantid, or SasView to generate the model. The ‘Mantid’ software
also supports Mantid’s MultiFit functionality, which requires the parameters listed here to be defined slightly
differently. More information can be found in Native File Format (Mantid MultiFit).

For information on the ‘Horace’ format, see Horace File Format.

Licence Mantid is available under a GPL-3 Licence. The component of SasView we use is SasModels, which is
available under a BSD 3-clause licence.

name The name of the problem.

This will be used as a unique reference so should not match other names in the dataset. A sanitised version of
this name will also be used in filenames with commas stripped out and spaces replaced by underscores.

description A description of the dataset.
This will be displayed in the Problem Summary Pages and Fitting Reports produced by a benchmark.
input_file The name of a file containing the data to fit.

The file must be in a subdirectory named data_£files, and should have the form:

header

x11 [x12 [x13 ...]] y11 [y12 [y13 ...]1]1 [ell [el2 ...]]
x21 [x22 [x23 ...]] y21 [y22 [y23 ...]1] [e21 [e22 ...]]

Mantid uses the convention of # X Y E asthe header and SASView uses the convention <X> <Y> <E>, although
neither of these are enforced. The error column is optional in this format.

If the data contains multiple inputs or outputs, the header must be written in one of the above conventions
with the labels as “x”, “y”, or “e” followed by a number. An example of this can be seen in examples/
benchmark_problems/Data_Assimilation/data_files/lorentz.txt

plot_scale The scale of the x and y axis for the plots. The options are ‘loglog’, ‘logy’, ‘logx’ and ‘linear’. If this is not
set it will default to ‘linear’.

function This defines the function that will be used as a model for the fitting.

Inside FitBenchmarking, this is passed on to the specified software and, as such, the format is specific to the
package we wish to use, as described below.

IVP

The IVP parser allows a user to define f in the following equation:
2 = f(t,x,*args)

To do this we use a python module to define the function. As in the above formula, the function can take the
following arguments:

1.1. Table Of Contents 63

https://github.com/mantidproject/mantid/blob/master/LICENSE.txt
https://github.com/SasView/sasmodels/blob/master/LICENSE.txt

FitBenchmarking Documentation, Release 0.1.dev1

¢ ¢ (float): The time to evaluate at
e x (np.array): A value for x to evaluate at
* *args (floats): The parameters to fit
To link to this function we use a function string with the following parameters:
* module: The path to the module
e func: The name of the function within the module

* step: The time step that the input data uses (currently only fixed steps are supported - if you need varying
time steps please raise an issue on our GitHub)

* *qgrgs: Starting values for the parameters
Mantid

A Mantid function consists of one or more base functions separated by a semicolon. This allows for a powerful
way of describing problems, which may have multiple components such as more than one Gaussian and a linear
background.

To use one of the base functions in Mantid, please see the list available here.

Note: Any non-standard arguments (e.g. ties, constraints, fixes, ...) will only work with Mantid fitting software.
Using other minimizers to fit these problems will result in the non-standard arguments being ignored.

SASView

SASView functions can be any of these.

Horace

The Horace functions are defined here Horace File Format
fit_ranges This specifies the region to be fit.

It takes the form shown in the example, where the first number is the minimum in the range and the second is the
maximum.

parameter_ranges An optional setting which specifies upper and lower bounds for parameters in the problem.

Similarly to fit_ranges, it takes the form where the first number is the minimum in the range and the second
is the maximum.

Currently in Fitbenchmarking, problems with parameter_ranges can be handled by SciPy, Bumps, Minuit, Man-
tid, Matlab Optimization Toolbox, DFO, Levmar and RALFit fitting software. Please note that the following
Mantid minimizers currently throw an exception when parameter_ranges are used: BFGS, Conjugate gradient
(Fletcher-Reeves imp.), Conjugate gradient (Polak-Ribiere imp.) and SteepestDescent.

Native File Format (Mantid MultiFit)

As part of the Mantid parsing we also offer limited support for Mantid’s MultiFit functionality.

Here we outline how to use Mantid’s MultiFit with FitBenchmarking, in which some options differ from the standard
Native File Format.

Warning: Due to the way Mantid uses ties (a central feature of MultiFit), MultiFit problems can only be used with
Mantid minimizers.

64 Chapter 1. FitBenchmarking

https://docs.mantidproject.org/nightly/fitting/fitfunctions/categories/FitFunctions.html
http://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/models/index.html
https://docs.mantidproject.org/nightly/algorithms/Fit-v1.html?highlight=fit#multiple-fit

FitBenchmarking Documentation, Release 0.1.dev1

In this format, data is separated from the function. This allows running the same dataset against multiple different
models to assess which is the most appropriate.

An example of a multifit problem is:

FitBenchmark Problem

software = 'Mantid’

name = 'MUSR62260'

description = 'Calibration data for mu SR intrument. Run 62260.'

input_file = ['MUSR62260_bkwd.txt', 'MUSR62260_bottom.txt', 'MUSR62260_fwd.txt', 'MUSR62260_
—top.txt']

function = 'name=FlatBackground,A0=0; name=GausOsc,A=0.2,Sigma=0.2,Frequency=1,Phi=0"
ties = ['fl.Sigma', 'fl.Frequency']

fit_ranges = [{'x': [0.1, 15.001}, {'x': [0.1, 15.0]1}, {'x': [0.1, 15.07}, {'x': [0.1, 15.
~01}]

plot_scale = 'linear'

Below we outline the differences between this and the Native File Format.
software Must be Mantid.
name As in Native File Format.
description As in Native File Format.
input_file As in Native File Format, but you must pass in a list of data files (see above example).
function As in Native File Format.
When fitting, this function will be used for each of the input_£files given simultaneously.
ties This entry is used to define global variables by tieing a variable across input files.

Each string in the list should reference a parameter in the function using Mantid’s convention of f<i>.<name>
where i is the position of the function in the function string, and name is the global parameter.

For example to run a fit which has a shared background and peak height, the function and ties fields might look
like:

function="name=LinearBackground, A0=0, A1=0; name=Gaussian, Height=0.01,.
—PeakCentre=0.00037, Sigma=le-05'
ties=['f0.A0', 'f0.A1', 'fl.Height']

fit_ranges As in Native File Format.

NIST Format

The NIST file format is based on the nonlinear regression problems found at the NIST Standard Reference Database.
Documentation and background of these problems can be found here.

We note that FitBenchmarking recognizes the NIST file type by checking the first line of the file starts with # NIST/ITL
StRD.

1.1. Table Of Contents 65

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.itl.nist.gov/div898/strd/
https://www.itl.nist.gov/div898/strd/general/bkground.html

FitBenchmarking Documentation, Release 0.1.dev1

Horace File Format

The Horace file format is based on Native File Format, this page is intended to demonstrate where the format differs.

Examples of horace problems are:

FitBenchmark Problem

software = 'Horace'
name = '1D Gaussian 1°'
description = '1D Gaussian (Test example from test_multifit_herbert)'

input_file = 'testdata_multifit_1.mat'

function = 'foreground=m_scripts/functions/mftest_gauss_bkgd_fb_test.m ,height=100,
—centre=50,sigma=7,const=0,grad=0"'

wye_function = 'matlab_script=m_scripts/wye_functions/fb_wye_IX_1D_testl.m'
simulate_function = 'matlab_script=m_scripts/simulate_functions/fb_simulate_IX_1D_testl.m

v
—

FitBenchmark Problem

software = 'Horace'
name = '3D_Gaussian'
description = '3D Gaussian (Horace\documentation\herbert\example_codes). The data in.,

—this example is generated in the wye_function'

input_file = 'dummy.txt'

function = 'foreground=m_scripts/functions/gauss3d_fb_test.m ,height=1100,centre_pl=66 ,
—centre_p2=1055,centre_p3=117,covmat_pl=15,covmat_p2=3,covmat_p3=5,covmat_p4=30,covmat_
—Pp5=-3,covmat_p6=20; background=m_scripts/functions/linear3D_bg_fb_test.m,bkgd_const=15"'
wye_function = 'matlab_script=m_scripts/wye_functions/fb_wye_IX_1D_test6.m'
simulate_function = 'matlab_script=m_scripts/simulate_functions/fb_simulate_IX_1D_test6.m

v
—

FitBenchmark Problem

software = 'Horace'

name = 'PCSMO_at_001_data'

description = 'PCSMO data at 0.0001 data'

input_file = 'pcsmo_ei70_base_bkd.sqw'

function = 'foreground=m_scripts/functions/testfunc_nb_sqw_db_test.m ,JF1=-11.39,JA=1.5,
- JF2=-1.35,JF3=1.5,Jperp=0.88,D=0.074,en_width=0.1"'

wye_function = 'matlab_script=m_scripts/wye_functions/fb_wye_pcsmo_test.m'
simulate_function = 'matlab_script=m_scripts/simulate_functions/fb_simulate_pcsmo_test.m'

The Horace file format requires you to have run the benchmark problem in Horace using fit() and simulate()
successfully. Relevant links on how to run this are: Multifit , Advanced Multifit and Tobyfit problems as well as
Running Horace in Parallel.

As in the native format, an input file must start with a comment indicating that it is a FitBenchmarking problem followed
by a number of key value pairs. Available keys can be seen in Native File Format and below:

software, name, description As described in the native format.

input_file For Horace we require a . sqw or .mat file containing preprocessed, Horace-compatible data.

Note: The .mat file is the result of using save(file, sqw_objects) and should be used if you are loading in multiple
sqw objects. Make sure to load the data in appropriately in the wye_function.

66 Chapter 1. FitBenchmarking

https://pace-neutrons.github.io/Horace/unstable/manual/Multifit.html
https://pace-neutrons.github.io/Horace/unstable/manual/Advanced_Multifit.html
https://pace-neutrons.github.io/Horace/unstable/manual/Tobyfit.html
https://pace-neutrons.github.io/Horace/unstable/manual/Parallel.html
https://uk.mathworks.com/help/matlab/ref/save.html

FitBenchmarking Documentation, Release 0.1.dev1

function The function is defined by one or more matlab script (.m) files which return a model of the foreground or
foreground and background respectively.

The format for defining the function is based on comma-separated key-value pairs, where the Matlab script files
are defined by the variables “foreground” and “background”. The remaining pairs define the starting values for
each of the models, respectively. It’s important to note that these pairs must be defined after their respective
models.

If both the foreground and background models are defined, they should be given as a semicolon-separated list.
In this case, there would be two comma-separated key-value pairs, one for the foreground and foreground pa-
rameters, and another for the background and background parameters, separated by a semicolon.

Examples:
Only foreground:
function = 'foreground=m_scripts/functions/mftest_gauss_bkgd.m ,height=100,

—centre=50,sigma=7,const=0,grad=0"'

Foreground and background:

function = 'foreground=m_scripts/functions/gauss.m ,height=1100,centre=66 |,
—.stdev=13; background=m_scripts/functions/linear_bg.m ,bkgd_const=15"

Note: All parameters must have unique names e.g.

function = 'foreground=gauss.m ,height=100,centre=50,sigma=7' ; background=gauss.m ,
—height_bkgd=100, centre_bkgd=50, sigma_bkgd=7"

wye_function The wye_function is defined by a matlab file which returns the:
w an sqw, dnd, ix_dataset object or xye struct. (see Multifit)
e standard deviation data
y intensity data
msk logical mask array of which elements are to be retained
This function takes the path to the datafile and the path to the matlab functions as arguments.
Explained example of the wye_function:

The first three lines add the path to matlab functions needed for fitting and loads the w object.

addpath(genpath(path));
source_data = load(datafile);
w = source_data.wl ;

The next line gets the y and e from the w object. These are the true y, e and msk values from the experiment.

[y, e, msk] = sigvar_get(w);

Any elements in msk that have a corresponding element in y that is equal to zero will be set to zero. The
purpose of this is to exclude these elements from subsequent calculations, since they are not informative.

msk(y==0) = 0;

1.1. Table Of Contents 67

https://pace-neutrons.github.io/Horace/unstable/manual/Multifit.html

FitBenchmarking Documentation, Release 0.1.dev1

The last two lines of the wye_function applies the msk to the y and e data. As the e from retrieved above
is the variance we have taken the square root of the value to get the standard deviation.

y = y(msk);
e = sqrt(e(msk));

Examples of the wye_function:

function [w, y, e, msk] = fb_wye_IX_ 1D_test(datafile, path)
% Gets the w , y, e and msk from the sqw object

addpath(genpath(path));
source_data = load(datafile);
w = source_data.wl ;

[y, e, msk] = sigvar_get(w);

msk(y==0) = 0;

y = y(msk);
e = sqrt(e(msk));

end

function [w, y, e, msk] = fb_wye_pcsmo_test(datafile, path)
% Gets the w , x, y ,e and msk from the sqw object

sqw_file = datafile
addpath(genpath(path));

ne = 10;

frac = 1.e-6;

ei = [25, 35, 50, 70, 100, 140];

freq = [300, 200, 200, 250, 300, 400];

proj = ortho_proj([1, ®, 0], [0, 1, 0], '"type', 'rrr');

sample = IX_sample(true,[0,0,1],[0,1,0], 'cuboid',[0.01,0.05,0.01]1);
sample.angdeg = [90 90 90];

sample.alatt = [3.4 3.4 3.4];

maps = maps_instrument(ei(4), freq(4), 'S');

lower_e = ei(4)%0.2; upper_e = ei(4)*0.7;

ebin = [lower_e, ei(4)/25, upper_e];

wl = cut_sqw(sqw_file, proj, [-1, 2/39, 1], [-1, 2/39, 1], [-10, 18], ebin);
wl = set_sample(wl,sample);

wl set_instrument (wl,maps) ;

wl = mask_random_fraction_pixels(wl, 0.1);

[y, e, msk] = sigvar_get(wl);
msk(y==0) = 0;

y = y(msk);

(continues on next page)

68

Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

e
W

sqrt(e(msk));
wl;

simulate_function The simulate_function is defined by a matlab file which returns the derived y values from simulate()
for the fitting function. This matlab file takes in the w, fitpars (fitting parameters) and msk. The w and msk are
the same as the wye_function. The fitpars are determined by the current minimizer.

Explained Example of the simulate_function:

forefunc = @mftest_gauss_bkgd;
mf = multifit(w);

mf = mf.set_fun(forefunc);

mf = mf.set_pin(fitpars);
[wout, fitpar] = mf.simulate();
[y, e] = sigvar_get(wout);

y=y (msk) ;

Note: If the benchmark problem uses random numbers in any way (e.g. fobyfit). A persisent seed needs to be set
before simulate is run. This makes sure that it uses the same seed everytime simulate() is ran.

persistent seed

if isempty (seed)
rng(3, "twister");
seed = rngQ;

else
rng(seed);

end

Examples of the simulate_function:

function y = fb_simulate_IX_ 1D_testl(w, fitpars,msk)
% simulate loop to solve for the parameters

forefunc = @mftest_gauss_bkgd_fb_test;
mf = multifit(w);

mf = mf.set_fun(forefunc);

mf = mf.set_pin(fitpars);

[wout, fitpar] = mf.simulate();

[y, e] = sigvar_get(wout);

y=y (msk);

end

function y = fb_simulate_pcsmo_test(w, fitpars,msk)
%simulate loop to solve for the parameters

persistent seed

if isempty (seed)
rng(3, "twister");
seed = rngQ);

(continues on next page)

1.1. Table Of Contents 69

FitBenchmarking Documentation, Release 0.1.dev1

(continued from previous page)

else
rng(seed);
end

JF1 = -11.39; JA = 1.5; JF2 = -1.35; JF3 = 1.5; Jperp = 0.88; D = 0.074; en_width = 0.1;
frac = 1.e-6;

sw_obj = pcsmo_fb_test(JF1, JA, JF2, JF3, Jperp, D);

%fitpars = [JF1 JA JF2 JF3 Jperp D en_width];

cpars = {fitpars 'mat', {'JF1', 'JA', 'JF2', 'JF3', 'Jperp', 'D(3,3)'},
'hermit', false, 'optmem', 0, 'useFast', false, 'formfact',
true, 'resfun', 'gauss', 'coordtrans', diag([2 2 1 1]),
'use_brille', true, 'node_volume_fraction', frac,
'use_vectors', false, 'Qtrans', diag([l1./4 1./4 1.1)};

tbf = tobyfit(w);

tbf = tbf.set_fun(@sw_obj.horace_sqw, {cpars{:}});
tbf = tbf.set_mc_points(5);

[fit_data , fit_pars] = tbf.simulate();

[y, e, ~] = sigvar_get(fit_data);

y=y (msk) ;
end

Note: All the functions needed in the fitting must be in the subdirectory of the benchmark problem.

Note: If you have a non standard installation of Horace please set the HORACE_LOCATION and the
SPINW_LOCATION as environment variables(e.g on IDAaaS).

Note: Horace Problems currently does not support plotting. Please set make_plots: no in the options file.

Detecting problem file type

FitBenchmarking detects which parser to use in two ways:
¢ For the CUTEst file format we check that the extension of the data file is sif
* For native and NIST file formats we check the first line of the file
— # FitBenchmark Problem corresponds to the native format

— # NIST/ITL StRD corresponds to the NIST format

70 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Checkpointing in FitBenchmarking

In some cases, fitting can take a long time and rerunning the fits to change output options is inefficient. For this situation
we provide a checkpointing file.

Using the checkpointing feature

As indicated above this feature is currently only for rendering changes to the presentation of runs although we plan to
extend it to combining and filtering runs in the future.

By default, when running FitBenchmarking it will create a checkpoint file in the results directory which will contain
all the information required to create output tables and plots.

To generate new reports for an existing checkpoint, use the --load_checkpoint option:

fitbenchmarking --load_checkpoint

This can use the same options file as in the original run but with the output changed, or seperate one as long as the
results directory and checkpointing file are the same.

There is also a seperate tool for working with checkpoint files £itbenchmarking-cp that can be used to regenerate
the reports.

fitbenchmarking-cp report --help

Warnings

Using --load_checkpoint will not re-run any results or run any new combinations that have been added to the
options file.

This command also does not check that the checkpoint file has not been edited manually. Manual editing may be desired
for removing or combining data while these features are developed but should be done with caution to ensure results
are still comparable.

FitBenchmarking Tests

The tests for FitBenchmarking require pytest>=3.6. We have split the tests into three categories:
* default: denotes tests involving pip installable sofrware packages,
e all: in addition to default, also runs tests on external packages, with the exception of matlab.

» matlab: Runs tests for matlab fitting software. Please note that these tests can currently only be run locally
through pytest.

1.1. Table Of Contents 71

FitBenchmarking Documentation, Release 0.1.dev1

Unit tests

Each module directory in FitBenchmarking (e.g. controllers) contains a test folder which has the unit tests for that
module. One can run the tests for a module by:

pytest fitbenchmarking/<MODULE_DIR> --test-type <TEST_TYPE>

where <TEST_TYPE> is either default or all. If --test-type argument is not given the default is all

System tests

System tests can be found in the systests directory in FitBenchmarking. As with the unit tests, these can be run via:

pytest fitbenchmarking/systests --test-type <TEST_TYPE>

Warning: The files in the expected results subdirectory of the systests directory are generated to check consis-
tency in our automated tests via GitHub Actions. They might not pass on your local operating system due to, for
example, different software package versions being installed.

GitHub Actions tests

The scripts that are used for our automated tests via GitHub Actions are located in the ci folder. These give an example
of how to run both the unit and system tests within FitBenchmarking.

Known Issues

This page is used to detail any known issues or unexpected behaviour within the software.

Problem-Format/Software Combinations

When comparing minimizer options from one software package (e.g., comparing all scipy_Is minimizers), we are not
aware of any issues. However, the general problem of comparing minimizers from multiple software packages, and
with different problem-formats, on truly equal terms is harder to achieve.

The following list details all cases where we are aware of a possible bias:
 Using native FitBenchmarking problems with the Mantid software and fitting using Mantid.

With Mantid data, the function evaluation is slightly faster for Mantid minimizers than for all other minimizers.
You should account for this when interpreting the results obtained in this case.

» Using non-scalar ties in native FitBenchmarking problems with the Mantid software.

Mantid allows parameters to be tied to expressions - e.g. X0=5.0 or X0=X1*2. While scalar ties are now
supported for all minimizers the more complicated expressions are not supported. If you need this feature please
get in touch with the development team with your use case.

* Running Mantid problems with Matlab fitting software.

To run problems with Matlab fitting software through FitBenchmarking, within the Matlab Controller the dy-
namically created cost_func.eval_model function is serialized and then loaded in the Matlab Engine workspace.
However for Mantid problems, this function is not picklable resulting in the problem being skipped over.

72 Chapter 1. FitBenchmarking

https://github.com/fitbenchmarking/fitbenchmarking/actions
https://github.com/fitbenchmarking/fitbenchmarking/actions

FitBenchmarking Documentation, Release 0.1.dev1

In all cases, the stopping criterion of each minimizer is set to the default value. An experienced user can change this.

Specific Problem/Minimizer Combinations
¢ CrystalField Example with Mantid - DampedGaussNewton Minimizer.
With this combination, GSL is known to crash during Mantid’s fitting. This causes python to exit without com-

pleting any remaining runs or generating output files. More information may be available via the issue on Man-
tid’s github page.

FitBenchmarking tutorial videos

On this page you will find some short tutorial videos on how to use FitBenchmarking.

Interpreting FitBenchmarking results

The following video explains how to interpret FitBenchmarking results.

Running FitBenchmarking

The following video explains how to run FitBenchmarking.

Useful links:

www.python.org/downloads/

Code demonstrated in this video:

python -m pip install fitbenchmarking[bumps,DFO,gradient_free,minuit,SAS,numdifftools]

fitbenchmarking

fitbenchmarking -p examples/benchmark_problems/NIST/low_difficulty

fitbenchmarking -o examples/options_template.ini

fitbenchmarking -r new_results/

fitbenchmarking -t acc runtime

1.1. Table Of Contents 73

https://github.com/mantidproject/mantid/issues/31176
https://github.com/mantidproject/mantid/issues/31176
https://www.python.org/downloads/

FitBenchmarking Documentation, Release 0.1.dev1

fitbenchmarking -t acc -1 WARNING

Choosing your options

The following video explains how to choose the best cost function / software / minimizer / Jacobian / Hessian for your
data.

1.1.3 Extending FitBenchmarking Documentation

FitBenchmarking is designed to be easily extendable to add new features to the software. Below we outline instructions
for doing this.

Adding Fitting Problem Definition Types

The problem definition types we currently support are listed in the page Problem Definition Files.

To add a new fitting problem type, the parser name must be derived from the file to be parsed. For current file formats
by including it as the first line in the file. e.g # Fitbenchmark Problem or NIST/ITL StRD, or by checking the file
extension.

To add a new fitting problem definition type, complete the following steps:

1. Give the format a name (<format_name>). This should be a single word or string of alphanumeric characters,
and must be unique ignoring case.

2. Create a parser in the fitbenchmarking/parsing directory. This parser must satisfy the following:
¢ The filename should be of the form "<format_name>_parser.py"
* The parser must be a subclass of the base parser, Parser

e The parser must implement parse(self) method which takes only self and returns a populated
FittingProblem

Note: File opening and closing is handled automatically.

3. If the format is unable to accommodate the current convention of starting with the <format_name>, you will
need to edit ParserFactory. This should be done in such a way that the type is inferred from the file.

4. Document the parser (see Problem Definition Files), being sure to include any licencing information.

5. Create the files to test the new parser. Automated tests are run against the parsers in FitBenchmarking, which
work by using test files in fitbenchmarking/parsing/tests/<format_name>. In the test_parsers.
generate_test_cases() function, one needs to add the new parser’s name to the variable formats, based on
whether or not the parser is pip installable. There are 2 types of test files needed:

¢ Generic tests: fitbenchmarking/parsing/tests/expected/ contains two files, basic.json and
start_end_x. json. You must write two input files in the new file format, which will be parsed using the
new parser to check that the entries in the generated fitting problem match the values expected. These must
be called basic.<ext>, start_end_x.<ext>, where <ext> is the extension of the new file format, and
they must be placed in fitbenchmarking/parsing/tests/<format_name>/.

74 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

* Function tests: A file named function_evaluations.json must also be provided in
fitbenchmarking/parsing/tests/<format_name>/, which tests that the function evaluation
behaves as expected. This file must be in json format and contain a string of the form:

{"file_namel": [[[x11,x12,...,xIn], [paramll, paraml2,...,paramlm], [resultll,
—resultl2,...,resultln]],
[[x21,x22,...,x2n], [param2l, param22,...,param2m], [result2l,
—result22,...,result2n]],
A
{"file_name2": [...],
..}

The test will then parse the files file_name<x> in turn evaluate the function at the given xx values and
params. If the result is not suitably close to the specified value the test will fail.

e Jacobian tests: If the parser you add has analytic Jacobian information, then in test_parsers.
py add <format_name> to the JACOBIAN_ENABLED_PARSERS global variable. Then add a file
jacobian_evaluations. jsonto fitbenchmarking/parsing/tests/<format_name>/, which tests
that the Jacobian evaluation behaves as expected. This file should have the same file structure as func-
tion_evaluations.json, and works in a similar way.

e Hessian tests: If the parser you add has analytic Hessian information, then in test_parsers.
py add <format_name> to the HESSIAN_ENABLED_PARSERS global variable. Then add a file
hessian_evaluations. json to fitbenchmarking/parsing/tests/<format_name>/, which tests
that the Hessian evaluation behaves as expected. This file should have the same file structure as func-
tion_evaluations.json, and works in a similar way.

* Integration tests: Add an example to the directory fitbenchmarking/test_files/all_parser_set/
. This will be used to verify that the problem can be run by scipy, and that accuracy results do not change un-
expectedly in future updates. If the software used for the new parser is pip-installable, and the installation is
done via FitBenchmarking’s setup. py, then add the same example to fitbenchmarking/test_files/
default_parsers_set/.

As part of this, the systests/expected_results/all_parsers.csv file, and if necessary the
systests/expected_results/default_parsers_set.csv file, will need to be updated. This is
done by running the systests:

pytest fitbenchmarking/systests

and then checking that the only difference between the results table and the expected value is the new
problem, and updating the expected file with the result.

6. Verify that your tests have been found and are successful by running pyfest -vv fitbenchmark-
ing/parsing/tests/test_parsers.py

Once the new parser is added, please add some examples that use this problem definition type following the instructions
at Adding More Data.

1.1. Table Of Contents 75

FitBenchmarking Documentation, Release 0.1.dev1

Adding More Data

We encourage users to contribute more data sets to FitBenchmarking; the more data we have available to test against,
the more useful FitBenchmarking is. First, please ensure that there is a parser available that can read your dataset, and
if necessary follow the instructions to add this functionality to FitBenchmarking. Once this is done, follow the steps
below and add to a pull request to make the data available to others.

1. Create a directory that contains:
* the data sets to be included
* afile META.txt containing metadata about the dataset.
* asubfolder data_files which contains any supplemental data
needed by the data parser. We particularly encourage analytic derivative information, if available.

2. Update the Benchmark problems page to include a description of the dataset. As well as information about the
source of the data, this should include:

* information about how many parameters and how many data points
are to be fitted in the dataset

e details of any external software that needs to be installed to load these
datasets.

3. Create zip and tar.gz archives of these directories, and pass along to one of the core developers to put on the
webspace. They will pass you a location of the dataset to include in the description page, and update the folder
containing all examples to contain your data set.

4. If the data is to be distributed with the GitHub source, add the directory to the examples/benchmark_problems
folder and commit to the repository. Please note that the maximum size of a file supported by GitHub is 100MB,
and so datasets with files larger than this cannot be added to the repository. Also, GitHub recommends that the
size of a Git repository is not more than 1GB.

Adding new cost functions

This section describes how to add cost functions to benchmarking in FitBenchmarking
In order to add a new cost function, <cost_func>, you will need to:

1. Create fitbenchmarking/cost_func/<cost_func>_cost_func.py, which contains a new subclass of
CostFunc. Then implement the methods:

e abstract CostFunc.eval_cost()

Evaluate the cost function
Parameters params (1ist)— The parameters to calculate residuals for
Returns evaluated cost function
Return type float

e abstract CostFunc.jac_res()

Uses the Jacobian of the model to evaluate the Jacobian of the cost function residual, V,r(z,y, p), at
the given parameters.

Parameters params (1ist)— The parameters at which to calculate Jacobians

Returns evaluated Jacobian of the residual at each x, y pair

Return type a list of 1D numpy arrays

76 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

e abstract CostFunc.jac_cost()

Uses the Jacobian of the model to evaluate the Jacobian of the cost function, V,,F'(r(x, y, p)), at the
given parameters.

Parameters params (1ist)— The parameters at which to calculate Jacobians

Returns evaluated Jacobian of the cost function

Return type 1D numpy array

e abstract CostFunc.hes_res()

Uses the Hessian of the model to evaluate the Hessian of the cost function residual, Vf,r(x7 Y, D), at
the given parameters.

Parameters params (1ist)— The parameters at which to calculate Hessians

Returns evaluated Hessian and Jacobian of the residual at each x, y pair

Return type tuple (list of 2D numpy arrays, list of 1D numpy arrays)

e abstract CostFunc.hes_cost()

Uses the Hessian of the model to evaluate the Hessian of the cost function, V2F (r(z, y,p)), at the
given parameters.

Parameters params (1ist)— The parameters at which to calculate Hessians

Returns evaluated Hessian of the cost function

Return type 2D numpy array

2. Document the available cost functions by:
¢ adding <cost_func> to the cost_func_type option in Fitting Options.
* updating any example files in the examples directory
¢ adding the new cost function to the Cost functions user docs.

3. Create tests for the cost function in fitbenchmarking/cost_func/tests/test_cost_func.py.

The FittingProblem and CostFunc classes

When adding new cost functions, you will find it helpful to make use of the following members of the FittingProblem
class.

class fitbenchmarking.parsing.fitting_problem.FittingProblem(options)
Definition of a fitting problem, which will be populated by a parser from a problem definition file.

Onces populated, this should include the data, the function and any other additional requirements from the data.

data_e

numpy array The errors or weights

data_x
numpy array The x-data

data_y
numpy array The y-data

eval_model (params, **kwargs)
Function evaluation method

Parameters params (1ist)— parameter value(s)
Returns data values evaluated from the function of the problem
Return type numpy array

You will also find it useful to implement the subclass members of CostFunc, Jacobian and Hessian.

1.1. Table Of Contents 77

FitBenchmarking Documentation, Release 0.1.dev1

class fitbenchmarking.cost_func.base_cost_func.CostFunc(problem)

Base class for the cost functions.

abstract eval_cost(params, **kwargs)

Evaluate the cost function
Parameters params (1ist)— The parameters to calculate residuals for
Returns evaluated cost function
Return type float

abstract hes_cost(params, **kwargs)

Uses the Hessian of the model to evaluate the Hessian of the cost function, V2 F(r(x,y, p)), at the given
parameters.

Parameters params (1ist)— The parameters at which to calculate Hessians
Returns evaluated Hessian of the cost function
Return type 2D numpy array

abstract hes_res(params, **kwargs)

Uses the Hessian of the model to evaluate the Hessian of the cost function residual, Vf,r(:c, y,p), at the
given parameters.

Parameters params (1ist)— The parameters at which to calculate Hessians
Returns evaluated Hessian and Jacobian of the residual at each x, y pair
Return type tuple (list of 2D numpy arrays, list of 1D numpy arrays)

abstract jac_cost(params, **kwargs)

Uses the Jacobian of the model to evaluate the Jacobian of the cost function, V, F'(r(z, y,p)), at the given
parameters.

Parameters params (1ist)