FitBenchmarking Documentation
Release 0.1.dev1

STFC

Oct 06, 2021

Contents

1 FitBenchmarking 3
I.1 Table Of Contents i i i it e 3
Python Module Index 75

Index 77

FitBenchmarking Documentation, Release 0.1.dev1

Contents 1

https://github.com/fitbenchmarking/fitbenchmarking/actions/workflows/release.yml?query=branch%3Av0.1.5-beta1
https://github.com/fitbenchmarking/fitbenchmarking/actions/workflows/main.yml?query=branch%3Av0.1.5-beta1
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1
https://coveralls.io/github/fitbenchmarking/fitbenchmarking
https://img.shields.io/badge/win10-support-blue.svg?style=flat-square&logo=windows
https://img.shields.io/badge/18.04-support-orange.svg?style=flat-square&logo=ubuntu
https://slack.com/

FitBenchmarking Documentation, Release 0.1.dev1

2 Contents

CHAPTER 1

FitBenchmarking

FitBenchmarking is an open source tool for comparing different minimizers/fitting frameworks. FitBenchmarking is
cross platform and we support Windows, Linux and Mac OS. For questions, feature requests or any other inquiries,
please open an issue on GitHub, or send us an e-mail at support@fitbenchmarking.com.

¢ Installation Instructions: https:/fitbenchmarking.readthedocs.io/en/v0.1.5-betal/users/install_instructions/
index.html

* User Documentation & Example Usage: https://fitbenchmarking.readthedocs.io/en/v0.1.5-betal/users/index.
html

e Community Guidelines: https://fitbenchmarking.readthedocs.io/en/v0.1.5-betal/contributors/guidelines.html

* Automated Tests: Run via GitHub Actions, https://github.com/fitbenchmarking/fitbenchmarking/actions, and
tests are documented at https://fitbenchmarking.readthedocs.io/en/v0.1.5-betal/users/tests.html

The package is the result of a collaboration between STFC’s Scientific Computing Department and ISIS Neutron and
Muon Facility and the Diamond Light Source. We also would like to acknowledge support from:

» EU SINE2020 WP-10, which received funding from the European Union’s Horizon2020 research and innova-
tion programme under grant agreement No 654000.

* EPSRC Grant EP/M025179/1 Least Squares: Fit for the Future.

* The Ada Lovelace Centre (ALC). ALC is an integrated, cross-disciplinary data intensive science centre, for
better exploitation of research carried out at our large scale National Facilities including the Diamond Light
Source (DLS), the ISIS Neutron and Muon Facility, the Central Laser Facility (CLF) and the Culham Centre for
Fusion Energy (CCFE).

1.1 Table Of Contents

1.1.1 FitBenchmarking Concept Documentation

Here we outline why we built the fitbenchmarking software, and how the software benchmarks minimizers with the
goal of hightlighting the best tool for different types of data.

mailto:support@fitbenchmarking.com
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/users/install_instructions/index.html
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/users/install_instructions/index.html
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/users/index.html
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/users/index.html
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/contributors/guidelines.html
https://github.com/fitbenchmarking/fitbenchmarking/actions
https://fitbenchmarking.readthedocs.io/en/v0.1.5-beta1/users/tests.html

FitBenchmarking Documentation, Release 0.1.dev1

Why is FitBenchmarking important?

Fitting a mathematical model to data is a fundamental task across all scientific disciplines. (At least) three groups of
people have an interest in fitting software:

* Scientists, who want to know what is the best algorithm for fitting their model to data they might encounter, on
their specific hardware;

* Scientific software developers, who want to know what is the state-of-the-art in fitting algorithms and imple-
mentations, what they should recommend as their default solver, and if they should implement a new method in
their software; and

* Mathematicians and numerical software developers, who want to understand the types of problems on which
current algorithms do not perform well, and to have a route to expose newly developed methods to users.

Representatives of each of these communities have got together to build FitBenchmarking. We hope this tool will help
foster fruitful interactions and collaborations across the disciplines.

Example workflow

The black crosses on the plot below are data obtained from an experiment at the VESUVIO beamline at ISIS Neutron
and Muon source:

EVS514188-90 processed Gaussian peaks 11

x Data
Starting Guess

0.15 ~

0.10 1
2
=
=

S 0.05-
=
£
<

0.00 ~

—0.05

T T T T T
0.0001 0.0002 0.0003 0.0004 0.0005
Time (us)

Fig. 1: VESUVIO experiment data

4 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

The scientist needs to interpret this data, and will typically use a data analysis package to help with this. Such packages
are written by specialist scientific software developers, who are experts in analysing the kind of data produced by a
given experiment; examples include Mantid, SasView, and Horace.

These packages include mathematical models, which depend on parameters, that can describe the data. We need to
find values for the parameters in these models which best fit the data — for more background, see this Wikipedia article.
The usual way this is done is by finding parameters that minimize the (weighted) squares of the error in the data, or
x? value. This is equivalent to formulating a nonlinear least-squares problem; specifically, given n data points (z;, ;)
(the crosses in the figure above), together with estimates of the errors on the values of y;, o;, we solve

LN 2
B ZargmgnZ(ZW_J;iﬁ’m) 7

x2(B)

where f(3; x) is the model we’re trying to fit, and 3 are the parameters we’re trying to find.

Usually the scientist will supply a starting guess, 3, (the pink curve in the graph above), which describes where they
think the solution might be. She then has to choose which algorithm to use to fit the curve from the selection available
in the analysis software. Different algorithms may be more or less suited to a problem, depending on factors such as
the architecture of the machine, the availability of first and second derivatives, the amount of data, the type of model
used, etc.

Below we show the data overlayed by a blue curve, which is a model fitted using the implementation of the Levenberg-
Marquardt algorithm from the GNU Scientific Library (1msder). The algorithm claims to have found a local mini-
mum with a Chi-squared error of 0.4771 in 1.9 seconds.

We also solved the nonlinear least squares problem using GSL’s implementation of a Nedler-Mead simplex algorithm
(nmsimplex2), which again claimed to solve the problem, this time in a faster 1.5 seconds. However, this time the
Chi-squared error was 0.8505, and we plot the curve obtained in green below. The previous curve is in dotted-blue,
for comparison.

By eye it is clear that the solution given by 1msder is better. As the volume of data increases, and we do more and
more data analysis algorithmically, it is increasingly important that we have the best algorithm without needing to
check it by eye.

FitBenchmarking will help the scientist make an informed choice by comparing runtime and accuracy of all available
minimizers, on their specific hardware, on problems from their science area, which will ensure they are using the most
appropriate minimizer.

FitBenchmarking will help the scientific software developer ensure that the most robust and quickest algorithms for
the type of data analysis they support are available in their software.

FitBenchmarking will help mathematicians see what the state of the art is, and what kinds of data are problematic. It
will give them access to real data, and will give a route for novel methods to quickly make it into production.

A workflow as described above plays a crucial role in the processing and analysis of data at large research facilities
in tasks as diverse as instrument calibration, refinement of structures, and data analysis methods specific to different
scientific techniques. FitBenchmarking will ensure that, across all areas that utilise least-squares fitting, scientists can
be confident they are using the best tool for the job.

We discuss the specific FitBenchmarking paradigm in the Section How does FitBenchmarking work?
How does FitBenchmarking work?
FitBenchmarking takes data and models from real world applications and data analysis packages. It fits the data to the

models by casting them as a nonlinear least-squares problem. We fit the data using a range of data fitting and nonlinear
optimization software, and present comparisons on the accuracy and timings.

1.1. Table Of Contents 5

https://mantidproject.org/
https://www.sasview.org
https://horace.isis.rl.ac.uk
https://en.wikipedia.org/wiki/Goodness_of_fit

FitBenchmarking Documentation, Release 0.1.dev1

EVS14188-90 processed Gaussian peaks 11

* Data
me Best Fit (Imsder)

0.15 -

0.10 1
i
=
=

2 0.05-
p=
£
=

0.00 4

—0.05 4

T T T T
0.0002 0.0003 0.0004 0.0005
Time (us)

Fig. 2: GSL’s 1msder (Levenberg-Marquardt) algorithm on the data

6 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Arbitrary units

EVS14188-90 processed Gaussian peaks 11

0.15 +

0.10

0.05 ~

0.00

—0.05 4

»x Data
= = Best Fit (Imsder)
nmsimplex2

T T
0.0001 0.0002

T T T
0.0003 0.0004 0.0005
Time (us)

Fig. 3: GSL’s nmsimplex2 (Nelder-Mead Simplex) algorithm on the data

1.1.

Table Of Contents

FitBenchmarking Documentation, Release 0.1.dev1

-]

- &
SasView

MANTID

2StRD

@‘ SciPy

5

nag ¢ DFO-GN/LS

‘mé Minuit A'VA VLR
Inul
., RALFit

Bumps

The Benchmarking Paradigm

FitBenchmarking can compare against any of the supported minmizers listed in Minimizer Options. We’ve also made
it straightforward to add new software by following the instructions in Adding Fitting Software — the software just
needs to be callable from Python.

Once you have chosen which minimizers you want to compare for a given problem, running FitBenchmarking will
give you a comparison to indicate the minimizer that performs best.

There are a number of options that you can pick to customize what your tests are comparing, or how they are run. A
full list of these options, and how to select them, is given in the section FitBenchmarking Options.

FitBenchmarking creates tables, as given in the section FitBenchmarking Output, which show a comparison between
the different minimizers available. An example of a table is:

This is the result of FitBenchmarking for a selection of software/minimizers and different problem definition types
supported in FitBenchmarking. Both the raw chi squared values, and the values normalised with respect to the best
minimizer per problem, are given. The problem names link to html pages that display plots of the data and the fit that
was performed, together with initial and final values of the parameters. Here is an example of the final plot fit:

Performance Profile

With each test FitBenchmarking also produces a Dolan-Moré performance profile:

The solvers appearing in the top left corner may be considered the best performing on this test set. See Dolan and
Moré (2001) for more information.

8 Chapter 1. FitBenchmarking

https://link.springer.com/article/10.1007/s101070100263
https://link.springer.com/article/10.1007/s101070100263

FitBenchmarking Documentation, Release 0.1.dev1

HIFI 116891

020.4{1)

bumps dfo gsl mantid minuit ralfit scipy scipy-Is
Levenberg- . Im-scipy-no-|
mp amoeba dfols Imsder Imder minuit gn gn_req G L-BFG5-B . trf
MarquardtMD jac
1.912e-05 1.60Be-05 1.63%e-05 1.612e-05 _ . 2.127e-05 1.606e-05 1.640e-05
BENNETTS . 1.606e-05 (1) .
(1.191) (1.001) il i (1.325) (1.027}
BoxBOD, Start 1 B.003 (1}
BoxBOD, Start 2 B.OD3{ 8.003 (1) B.003 (1} B.003 (1}
CERIGS1A 1) 3348(1) 381.9 (1.141)* 340.0 [1.045) 3B3.2 (1.144)* |3B3.2 (1.144) ([334.8(1} 3348 (1}
ENGINX 193740
libration, spectrum 14.58{1) 14.69 {1.007) 15.12 (1.037) 20,96 (1.437)* |20.96 (1.437) [14.38 (1} 15.38 (1.054)
651, peak 5
Gauss3, Start 1 T6.64{1) T6.64 (1) 76.64 (1} 77.78 (1.015)* [80.38 (1.040) |76.64 (1) 76.64 (1}
Gauss3, Start 2 T6.64{1) 76.64 (1)* 76.64 (1} 7B.06(1.03° ([92.71(1.21) 76.64 (1} 76.64 (1}
920.4 (1) 922 (1.002)* 922 (1.002) 920.4 (1} 020.4 (1}

2.180e-11
Lanczos2, Start 1 2.180e-11 (1) 2.18%e-11 {1)|2.18%e-11 {1)|2.18%e-11 {1) -
2.180e-11
Lanczos2, Start 2 2.180e-11 (1) 2.18%e-11 {1)|2.18%e-11 {1)|2.18%e-11 {1) i 2.180e-11 (1}[2.180e-11 (1)
Thurber, Start 1 7.591 (1} 7.591 (1) 7.501{1L) 7.501{1) 7.501{1) 7.591 (1} 7.591{1) ([7.591 (1} 7.591 (1}
Thurber, Start 2 7.591 (1} 7.591 (1) 7.501{1L) 7.501{1) 7.501{1) 7.591 (1} 7.591{1) ([7.591 (1} 7.591 (1}
WISH17701 panel 103 _
N _ 7.014e+06 7.014e+06 7.014e+06 |7.014e+06 o 7.014e+06 (7.0142+06 7.0142+06
tube 3 calibration, peak 7.014e+06 (1) | 7.014e+06 (1) 7.014e+06 (1}
2 (1) it (1} 1) (1} (1} (1)

CERIBST1A

f0=0.0, f1=0.0, T2=1.0, f3=3702.76, f4=26061.4, 5=38.7105, f6=37027.1

Arbitrary units

300

250

200

150

100

30

CERI&ES 1A

Best Fit (trf)
dfols
¥ Data

X
X
T:‘f* ’

¥

I
»

I
L}

T
37000

3?i{}{]
Time (us)

1.1. Table Of Contents

FitBenchmarking Documentation, Release 0.1.dev1

Performance profile - acc

1.0
I
" [..... L S N [mm—————— —
s | A U B
y— | 1 |
0.8
2 I —] IJ E
E ; —-L ——————————— l
E |
=
g 0671 1 I","'
=)
o Iy
[F] I .
S [
-g 0.4-|r.
S I
[
o
T 0.2
o
y—
0.0| T T T T LI | T T T
12 4 6 8 10 102 103 104
f

mp

amoeba

dfols

Imsder (2 failures)

Imder
Levenberg-MarquardtMD
minuit (1 failure)

= gn (3 failures)

gn_reg (3 failures)
cG

L-BFG5-B
Im-scipy-no-jac
trf

10

Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

1.1.2 FitBenchmarking User Documentation

In these pages we describe how to install, run, and set options to use the FitBenchmarking software.

Installation

Fitbenchmarking will install all packages that can be installed through pip. This includes the minimizers from SciPy,
bumps, DFO-GN/LS, Minuit, and also the SASModels package.

To enable Fitbenchmarking with the other supported software, you must install them with the external software in-
structions.

Installing FitBenchmarking and default fitting packages

We recommend using for running/installing Fitbenchmarking. The easiest way to install FitBenchmarking is by using
the Python package manager, pip.

Installing via pip

FitBenchmarking can be installed via the command line by entering:

python -m pip install fitbenchmarking[bumps,DFO,minuit, SAS]

This will install the latest stable version of FitBenchmarking. For all available versions please visit the FitBenchamark-
ing PyPI project. FitBenchmarking can also use additional software that cannot be installed using pip; please see
Installing External Software for details.

Note: This install will include additional optional packages — see Extra dependencies. Any of the dependencies in
the square brackets can be omitted, if required, and that package will not be available for Benchmarking, or will use
the version of the package already on your system, if appropriate.

Installing from source

You may instead wish to install from source, e.g., to get the very latest version of the code that is still in development.

1. Download this repository or clone it using git: git clone https://github.com/
fitbenchmarking/fitbenchmarking.git

2. Open up a terminal (command prompt) and go into the fitbenchmarking directory.

3. Once you are in the right directory, we recommend that you type

python -m pip install . [bumps,DFO,minuit, SAS]

4. Additional software that cannot be installed via pip can also be used with FitBenchmarking. Follow the instruc-
tions at /nstalling External Software.

1.1. Table Of Contents 11

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/
https://pypi.org/project/fitbenchmarking/
https://git-scm.com/

FitBenchmarking Documentation, Release 0.1.dev1

Extra dependencies

In addition to the external packages described at Installing External Software, some optional dependencies can be
installed directly by FitBenchmarking. These are installed by issuing the commands

’python -m pip install fitbenchmarking|['option-1', 'option-2"',...]

or

’python -m pip install .['option-1','option-2',...]

where valid strings opt ion-x are:
* bumps- installs the Bumps fitting package.
* DFO —installs the DFO-LS and DFO-GN fitting packages.
* minuit — installs the Minuit fitting package.

e SAS —installs the Sasmodels fitting package.

Installing External Software

Fitbenchmarking will install all packages that are available through pip.

To enable Fitbenchmarking with the other supported software, they need to be installed and available on your machine.
We give pointers outlining how to do this below, and you can find install scripts for Ubuntu 18.04 in the directory
/build/<software>/

CUTEst

CUTESst is used to parse SIF files in FitBenchmarking, and is called via the PyCUTEst interface.

Currently this is only supported for Mac and Linux, and can be installed by following the instructions outlined on the
pycutest documentation

Please note that the PYCUTEST__CACHE environment variable must be set, and it must be in the PYTHONPATH.

GSL

GSL is used as a fitting software in FitBenchmarking, and is called via the pyGSL interface.

Install instructions can be found at the pyGSL docs. This package is also installable via pip, provided GSL is available
on your system; see our example build script in build/gsl.

Note: pyGSL may not be installable with the latest versions of pip. We have found that 20.0.2 works for our tests.

Mantid

Mantid is used both as fitting software, and to parse data files.

Instructions on how to install Mantid for range of systems are available at https://download.mantidproject.org/.

12 Chapter 1. FitBenchmarking

https://bumps.readthedocs.io
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
https://github.com/SasView/sasmodels
https://jfowkes.github.io/pycutest/_build/html/install.html
http://pygsl.sourceforge.net/
https://download.mantidproject.org/

FitBenchmarking Documentation, Release 0.1.dev1

RALFit

RALFit is availble to use as fitting software.

Instructions on how to build the python interface are at https://ralfit.readthedocs.io/projects/Python/en/latest/install.
html

Running FitBenchmarking

Once installed, issuing the command

fitbenchmarking

will run the NIST test example on SciPy minmizers.

Running alternative problems

Other problems written in a supported file format can be analyzed with FitBenchmarking by passing the path using
the ——problem-sets (or —p) option. Some example problems can be downloaded from Benchmark problems, and
they can also be found in the fitbenchmarking/examples directory of the code.

For example, to run the NIST low difficulty set from the base directory of the source, type into the terminal:

fitbenchmarking -p examples/benchmark_problems/NIST/low_difficulty

Changing the options

An options file can also be passed with the —o argument. For example, the template file can be run by issuing the
command

fitbenchmarking -o examples/options_template.ini \
-p examples/benchmark_problems/NIST/low_difficulty

Details about how the options file must be formatted are given in FitBenchmarking Options.

Running fitbenchmarking -h will give more guidance about available commands, including examples of how
to run multiple problem sets.

FitBenchmarking Output

FitBenchmarking produces tables as outputs. The links below give descriptions of these tables.

Comparison Table

class fitbenchmarking.results_processing.compare_table.CompareTable (results,
best_results,
options,
group_dir,
pp_locations,
ta-

ble_name)
The combined results show the accuracy in the first line of the cell and the runtime on the second line of the cell.

1.1. Table Of Contents 13

https://ralfit.readthedocs.io/projects/Python/en/latest/install.html
https://ralfit.readthedocs.io/projects/Python/en/latest/install.html

FitBenchmarking Documentation, Release 0.1.dev1

Accuracy Table

class fitbenchmarking.results_processing.acc_table.AccTable (results, best results,
options, group_dir,
pp_locations, ta-

ble_name)
The accuracy results are calculated from the final chi squared value:

n 2
— f (2,
min Z (yz f(zi,p))
L €
where n data points (x;, y;), associated errors ¢;, and a model function f(z, p).

Runtime Table

class fitbenchmarking.results_processing.runtime_table.RuntimeTable (results,
best _results,
options,
group_dir,
pp_locations,
ta-

ble_name)
The timing results are calculated from an average using the timeit module in python. The number of runtimes

can be set in FitBenchmarking Options.

Local Minimizer Table

class fitbenchmarking.results_processing.local_min_table.LocalMinTable (results,
best_results,
op-
tions,
group_dir,
pp_locations,
ta-
ble_name)

T
%. The True or False indicates

The local min results shows a True or False value together with
whether the software finds a minimum with respect to the following criteria:
* ||7|| < RES_TOL,

* |[JTr]] < GRAD_TOL,
. % < GRAD_TOL,

where J and r are the Jacobian and residual of f(z,p), respectively. The tolerances can be found in the results
object.

Table formats

The tables for accuracy, runt ime and compare have three display modes:

14 Chapter 1. FitBenchmarking

https://docs.python.org/2/library/timeit.html

FitBenchmarking Documentation, Release 0.1.dev1

{ 'abs': 'Absolute values are displayed in the table.',
'both': 'Absolute and relative values are displayed in the table '
'in the format "~ “abs (rel) "',
'rel': 'Relative values are displayed in the table.'}

This can be set in the option file using the Comparison Mode option.

The Local Minimizer Table table is formatted differently, and doesn’t use this convention.
Benchmark problems
To help choose between the different minimizers, we have made some curated problems available to use with Fit-

Benchmarking. It is also straightforward to add custom data sets to the benchmark, if that is more appropriate; see
Problem Definition Files for specifics of how to add additional problems in a supported file format.

Downloads

You can download a folder containing all examples here: .zip or .tar.gz

Individual problem sets are also available to download below.

We supply some standard nonlinear least-squares test problems in the form of the NIST nonlinear regression set and
the relevant problems from the CUTEst problem set, together with some real-world data sets that have been extracted
from Mantid and SASView usage examples and system tests. We’ve made it possible to extend this list by following
the steps in Adding Fitting Problem Definition Types.

Each of the test problems contain:
* a data set consisting of points (x;, y;) (with optional errors on y;, 0;);
* a definition of the fitting function, f(3;z); and
* (at least) one set of initial values for the function parameters 3.

If a problem doesn’t have observational errors (e.g., the NIST problem set), then FitBenchmarking can approximate
errors by taking o; = /y;. Alternatively, there is an option to disregard errors and solve the unweighted nonlinear
least-squares problem, setting o; = 1.0 irrespective of what has been passed in with the problem data.

As we work with scientists in other areas, we will extend the problem suite to encompass new categories. The
FitBenchmarking framework has been designed to make it easy to integrate new problem sets, and any additional
data added to the framework can be tested with any and all of the available fitting methods.

Currently FitBenchmarking ships with data from the following sources:

Powder Diffraction Data (SIF files)

Download . zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/DIAMOND_SIF) contain data from powder
diffraction experiments. The data supplied comes from the [14 Hard X-Ray Nanoprobe beamline at the Diamond
Light source, and has been supplied in the SIF format used by CUTEst.

These problems have either 66 or 99 unknown parameters, and fit around 5,000 data points.

1.1. Table Of Contents 15

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://github.com/ralna/CUTEst/wiki
https://www.mantidproject.org
https://www.sasview.org
https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I14.html
https://github.com/ralna/CUTEst

FitBenchmarking Documentation, Release 0.1.dev1

Warning: The external packages CUTEst and pycutest must be installed to run this data set. See Installing
External Software for details.

MultiFit Data (Mantid)

Download .zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/MultiFit) contain data for testing the MultFit
functionality of Mantid. This contains a simple data set, on which two fits are done, and a calibration dataset from the
MuSR spectrometer at ISIS, on which there are four fits available. See The MultiFit documentation for more details.

Warning: The external package Mantid must be installed to run this data set. See Installing External Software
for details.

This will also only work using the Mantid Minimizers.

Muon Data (Mantid)

Download .zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/Muon) contain data from Muon spectrome-
ters. The data supplied comes from the HiFi and EMU instruments at STFC’s ISIS Neutron and Muon source, and has
been supplied in the format that Mantid uses to process the data.

These problems have between 5 and 13 unknown parameters, and fit around 1,000 data points.

Warning: The external package Mantid must be installed to run this data set. See Installing External Software
for details.

NIST

Download . zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/NIST) contain data from the NIST Nonlinear
Regression test set.

These problems are split into low, average and high difficulty. They have between 2 and 9 unknown parameters, and
fit between 6 and 250 data points.

Neutron Data (Mantid)

Download .zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/Neutron) contain data from Neutron scat-
tering experiments. The data supplied comes from the Engin-X, GEM, eVS, and WISH instruments at STFC’s ISIS
Neutron and Muon source, and has been supplied in the format that Mantid uses to process the data.

The size of these problems differ massively. The Engin-X calibration problems find 7 unknown parameters, and fit to
56-67 data points. The Engin-X vanadium problems find 4 unknown parameters, and fit to around 14,168 data points.

16 Chapter 1. FitBenchmarking

https://www.isis.stfc.ac.uk/Pages/musr.aspx
https://www.isis.stfc.ac.uk/Pages/hifi.aspx
https://www.isis.stfc.ac.uk/Pages/EMU.aspx
https://mantidproject.org/
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.isis.stfc.ac.uk/Pages/Engin-X.aspx
https://www.isis.stfc.ac.uk/Pages/gem.aspx
https://www.isis.stfc.ac.uk/Pages/Vesuvio.aspx
https://www.isis.stfc.ac.uk/Pages/wish.aspx
https://mantidproject.org/

FitBenchmarking Documentation, Release 0.1.dev1

The eVS problems find 8 unknown parameters, and fit to 1,025 data points. The GEM problem finds 105 unknown
parameters, and fits to 1,314 data points. The WISH problems find 5 unknown parameters, and fit to 512 data points.

Warning: The external package Mantid must be installed to run this data set. See Installing External Software
for details.

Small Angle Scattering (SASView)

Download . zipor .tar.gz

These problems (also found in the folder examples/benchmark_problems/SAS_modelling/1D) are two data sets from
small angle scattering experiments. These are from fitting data to a cylinder, and have been supplied in the format that
SASView uses to process the data.

These have 6 unknown parameters, and fit to either 20 or 54 data points.

Warning: The external package sasmodels must be installed to run this data set. See Installing External
Software for details.

CUTEst (SIF files)

Download .zipor .tar.gz

This directory (also found in the folder examples/benchmark_problems/SIF) contain SIF files encoding least squares
problems from the CUTEst continuous optimization testing environment.

These are from a wide range of applications. They have between 2 and 9 unknown parameters, and for the most part fit
between 6 and 250 data points, although the VESUVIO examples (from the VESUVIO instrument at ISIS) have 1,025
data points (with 8 unknown parameters).

Warning: The external packages CUTEst and pycutest must be installed to run this data set. See Installing
External Software for details.

Simple tests

Download .zipor .tar.gz

This folder (also found in examples/benchmark_problems/simple_tests) contains a number of simple tests with known,
and easy to obtain, answers. We recommend that this is used to test any new minimizers that are added, and also that
any new parsers reimplement these data sets and models (if possible).

FitBenchmarking Options

The default behaviour of FitBenchmarking can be changed by supplying an options file. The default values of these
options, and how to override them, are given in the pages below.

1.1. Table Of Contents 17

http://www.sasview.org/docs/user/models/cylinder.html
http://www.sasview.org
https://github.com/ralna/SIFDecode
https://github.com/ralna/CUTEst
https://www.isis.stfc.ac.uk/Pages/Vesuvio.aspx

FitBenchmarking Documentation, Release 0.1.dev1

Fitting Options

Options that control the benchmarking process are set here.

Software (software)

Software is used to select the fitting software to benchmark, this should be a newline-separated list. Available options
are:

¢ bumps (default software)

e dfo (default software)

¢ gs1 (external software — see Installing External Software)

* mantid (external software — see Installing External Software)
e minuit (default software)

e ralfit (external software — see Installing External Software)
¢ scipy (default software)

e scipy_1s (default software)

Default are bumps, dfo, minuit, scipy, and scipy_1ls

[FITTING]

software: bumps
dfo
minuit
scipy
scipy_ls

Warning: Software must be listed to be here to be run. Any minimizers set in Minimizer Options will not be run
if the software is not also present in this list.

Number of minimizer runs (num_runs)

Sets the number of runs to average each fit over.

Default is 5

[FITTING]
num_runs: 5

Algorithm type (algorithm_type)

This is used to select what type of algorithm is used within a specific software. The options are:
* all - all minimizers

¢ 1s - least-squares fitting algorithms

18 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

e deriv_free - derivative free algorithms (these are algorithms that do not require an information about
derivatives. For example, the Simplex method in Mantid does not require derivative information but
Im-scipy-no-Jjacin scipy_1ls does but the derivative is handle internally within the software package)

* general - minimizers which solve a generic min f{x)

Defaultis all

[FITTING]
algorithm_type: all

Warning: Choosing an option other than a11 may deselect certain minimizers set in the options file

Use errors (use_errors)

This will switch between weighted and unweighted least squares. If use_errors=True, and no errors are supplied,
then e [1] will be setto sqrt (abs (y[i])). Errors below 1.0e-8 will be clipped to that value.

Default is True (yes/no can also be used)

[FITTING]
use_errors: yes

Jacobian method (jac_method)

This sets the Jacobian used. Current Jacobian methods are:
* SciPyFD - denotes the use of SciPy’s finite difference Jacobian approximations

Default is SciPyFD

[FITTING]
jac_method: SciPyFD

Numerical method (num_method)

Sets the numerical method wused in conjunction with the Jacobian method. Currently
scipy.optimize._numdiff.approx_derivative are the only methods implemented to calculate finite difference Ja-
cobians. Scipy options are given as below:

* 2point - use the first order accuracy forward or backward difference.

* 3point -use central difference in interior points and the second order accuracy forward or backward difference
near the boundary.

* cs - use a complex-step finite difference scheme. This assumes that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise, produces bogus results.

Default is 2point

[FITTING]
num_method: 2point

1.1. Table Of Contents 19

FitBenchmarking Documentation, Release 0.1.dev1

Minimizer Options

This section is used to declare the minimizers to use for each fitting software.

Warning: Options set in this section will only have an effect if the related software is also set in Fitting Options
(either explicitly, or as a default option).

Bumps (bumps)
Bumps is a set of data fitting (and Bayesian uncertainty analysis) routines. It came out of the University of Maryland
and NIST as part of the DANSE (Distributed Data Analysis of Neutron Scattering Experiments) project.
FitBenchmarking currently supports the Bumps minimizers:

* Nelder-Mead Simplex (amoeba)

* Levenberg-Marquardt (1m)

¢ Quasi-Newton BFGS (newton)

¢ Differential Evolution (de)

MINPACK (mp) This is a translation of MINPACK to Python.

Links GitHub - bumps

The Bumps minimizers are set as follows:

[MINIMIZERS]

bumps: amoeba
Im-bumps
newton
de

mp

Warning: The additional dependency Bumps must be installed for this to be available; See Extra dependencies.

DFO (dfo)

There are two Derivative-Free Optimization packages, DFO-LS and DFO-GN. They are derivative free optimization
solvers that were developed by Lindon Roberts at the University of Oxford, in conjunction with NAG. They are
particularly well suited for solving noisy problems.

FitBenchmarking currently supports the DFO minimizers:
* Derivative-Free Optimizer for Least Squares (dfols)
¢ Derivative-Free Gauss-Newton Solver (dfogn)
Links GitHub - DFO-GN GitHub - DFO-LS

The DFO minimizers are set as follows:

20 Chapter 1. FitBenchmarking

https://bumps.readthedocs.io
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#nelder-mead-simplex
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#fit-lm
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#quasi-newton-bfgs
https://bumps.readthedocs.io/en/latest/guide/optimizer.html#differential-evolution
https://github.com/bumps/bumps/blob/96b5100fc3d5b9485bd4a444c83a33617b74aa9d/bumps/mpfit.py
https://github.com/bumps/bumps
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfols/userguide.html
http://people.maths.ox.ac.uk/robertsl/dfogn/userguide.html
https://github.com/numericalalgorithmsgroup/dfogn
https://github.com/numericalalgorithmsgroup/dfols

FitBenchmarking Documentation, Release 0.1.dev1

[MINIMIZERS]
dfo: dfols
dfogn

Warning: Additional dependencies DFO-GN and DFO-LS must be installed for these to be available; See Extra
dependencies.

GSL (gsl)

The GNU Scientific Library is a numerical library that provides a wide range of mathematical routines. We call GSL
using the pyGSL Python interface.

The GSL routines have a number of parameters that need to be chosen, often without default suggestions. We have
taken the values as used by Mantid.

We provide implementations for the following packages in the multiminimize and multifit sections of the library:
e Levenberg-Marquardt (unscaled) (1mder)
* Levenberg-Marquardt (scaled) (lmsder)
e Nelder-Mead Simplex Algorithm (nmsimplex)
e Nelder-Mead Simplex Algorithm (version 2) (nmsimplex?2)
* Polak-Ribiere Conjugate Gradient Algorithm (conjugate_pr)
* Fletcher-Reeves Conjugate-Gradient (conjugate_fr)
e The vector quasi-Newton BFGS method (vector_bfgs)
e The vector quasi-Newton BFGS method (version 2) (vector_bfgs2)
» Steepest Descent (steepest_descent)
Links SourceForge PyGSL

The GSL minimizers are set as follows:

[MINIMIZERS]

gsl: lmsder
Imder
nmsimplex
nmsimplex2
conjugate_pr
conjugate_fr
vector_bfgs
vector_bfgs2
steepest_descent

Warning: The external packages GSL and pygsl must be installed to use these minimizers.

1.1. Table Of Contents 21

https://www.gnu.org/software/gsl/
https://sourceforge.net/projects/pygsl/
https://www.gnu.org/software/gsl/doc/html/multimin.html
https://www.gnu.org/software/gsl/doc/html/nls.html
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multifit_nlin.lmder
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multifit_nlin.lmsder
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.nmsimplex
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.nmsimplex2
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.conjugate_pr
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.conjugate_fr
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.vector_bfgs
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.vector_bfgs2
http://pygsl.sourceforge.net/api/pygsl.html#pygsl.multiminimize.steepest_descent
http://pygsl.sourceforge.net/

FitBenchmarking Documentation, Release 0.1.dev1

Mantid (mantid)

Mantid is a framework created to manipulate and analyze neutron scattering and muon spectroscopy data. It has
support for a number of minimizers, most of which are from GSL.

* BFGS (BFGS)

* Conjugate gradient (Fletcher-Reeves) (Conjugate gradient (Fletcher-Reeves imp.))
* Conjugate gradient (Polak-Ribiere) (Conjugate gradient (Polak-Ribiere imp.))

e Damped GaussNewton (Damped GaussNewton)

* Levenberg-Marquardt algorithm (Levenberg-Marquardt)

* Levenberg-Marquardt MD (Levenberg-MarquardtMD) - An implementation of Levenberg-Marquardt in-
tended for MD workspaces, where work is divided into chunks to achieve a greater efficiency for a large number
of data points.

e Simplex (simplex)

 SteepestDescent (SteepestDescent)

e Trust Region (Trust Region)- An implementation of one of the algorithms available in RALFit.
Links GitHub - Mantid Mantid’s Fitting Docs

The Mantid minimizers are set as follows:

[MINIMIZERS]

mantid: BFGS
Conjugate gradient (Fletcher—-Reeves imp.)
Conjugate gradient (Polak-Ribiere imp.)
Damped GaussNewton
Levenberg-Marquardt
Levenberg-MarquardtMD
Simplex
SteepestDescent
Trust Region

Warning: The external package Mantid must be installed to use these minimizers.

Minuit (minuit)

CERN developed the Minuit package to find the minimum value of a multi-parameter function, and also to compute
the uncertainties. We interface via the python interface iminuit with support for the 2.x series.

e Minuit’s MIGRAD (minuit)
Links Github - iminuit

The Minuit minimizers are set as follows:

[MINIMIZERS]
minuit: minuit

22 Chapter 1. FitBenchmarking

https://www.mantidproject.org
https://docs.mantidproject.org/nightly/fitting/fitminimizers/BFGS.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/FletcherReeves.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/PolakRibiere.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/DampedGaussNewton.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/LevenbergMarquardt.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/LevenbergMarquardtMD.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/Simplex.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/GradientDescent.html
https://docs.mantidproject.org/nightly/fitting/fitminimizers/TrustRegion.html
https://github.com/mantidproject/mantid
https://docs.mantidproject.org/nightly/algorithms/Fit-v1.html
http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
https://iminuit.readthedocs.io
https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.pdf
https://github.com/scikit-hep/iminuit

FitBenchmarking Documentation, Release 0.1.dev1

Warning: The additional dependency Minuit must be installed for this to be available; See Extra dependencies.

RALFit (ralfit)

RALFit is a nonlinear least-squares solver, the development of which was funded by the EPSRC grant Least-Squares:
Fit for the Future. RALFit is designed to be able to take advantage of higher order derivatives, although only first
order derivatives are currently utilized in FitBenchmarking.

* Gauss-Newton, trust region method (gn)
* Hybrid Newton/Gauss-Newton, trust region method (hybrid)
* Gauss-Newton, regularization (gn_req)
» Hybrid Newton/Gauss-Newton, regularization (hybrid_req)

Links Github - RALFit. RALFit’s Documentation on: Gauss-Newton/Hybrid models, the trust region method and
The regularization method

The RALFit minimizers are set as follows:

[MINIMIZERS]
ralfit: gn
gn_reg
hybrid
hybrid_reg

Warning: The external package RALFit must be installed to use these minimizers.

SciPy (scipy)

SciPy is the standard python package for mathematical software. In particular, we use the minimize solver for general
minimization problems from the optimization chapter the SciPy’s library. Currently we only use the algorithms that
do not require Hessian information as inputs.

* Nelder-Mead algorithm (Nelder-Mead)

* Powell algorithm (Powell)

* Conjugate gradient algorithm (CG)

* BFGS algorithm (BFGS)

* Newton-CG algorithm (Newt on—-CG)

e L-BFGS-B algorithm (L-BFGS-B)

* Truncated Newton (TNC) algorithm (TNC)

* Sequential Least SQuares Programming (SLSQP)
Links Github - SciPy minimize

The SciPy minimizers are set as follows:

1.1. Table Of Contents 23

https://ralfit.readthedocs.io/projects/Fortran/en/latest/
https://github.com/ralna/ralfit/
https://ralfit.readthedocs.io/projects/Fortran/en/latest/method.html#the-models
https://ralfit.readthedocs.io/projects/Fortran/en/latest/method.html#the-trust-region-method
https://ralfit.readthedocs.io/projects/C/en/latest/method.html#regularization
https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-newtoncg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-tnc.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://github.com/scipy/scipy/blob/master/scipy/optimize/_minimize.py

FitBenchmarking Documentation, Release 0.1.dev1

[MINIMIZERS]
scipy: Nelder-Mead
Powell
CG
BFGS
Newton-CG
L-BFGS-B
TNC
SLSQP

SciPy LS (scipy_1s)

SciPy is the standard python package for mathematical software. In particular, we use the least_squares solver for
Least-Squares minimization problems from the optimization chapter the SciPy’s library.

» Levenberg-Marquardt with supplied Jacobian (1lm-scipy) - a wrapper around MINPACK

* Levenberg-Marquardt with no Jacobian passed (lm-scipy-no-Jjac) - as above, but using MINPACK’s ap-
proximate Jacobian

* The Trust Region Reflective algorithm (t rf)
* A dogleg algorithm with rectangular trust regions (dogbox)
Links Github - SciPy least_squares

The SciPy least squares minimizers are set as follows:

[MINIMIZERS]

scipy_ls: lm-scipy-no-jac
Ilm-scipy
trf
dogbox

Plotting Options

The plotting section contains options to control how results are presented.

Make plots (make_plots)

This allows the user to decide whether or not to create plots during runtime. Toggling this to False will be much faster
on large data sets.

Default is True (yes/no can also be used)

[PLOTTING]
make_plots: yes

Colour scale (colour_scale)

Lists thresholds for each colour in the html table. In the example below, this means that values less than 1.1 will have
the top ranking (brightest) and values over 3 will show as the worst ranking (deep red).

Default thresholdsare 1.1, 1.33, 1.75, 3, and inf

24 Chapter 1. FitBenchmarking

https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://github.com/scipy/scipy/blob/master/scipy/optimize/_lsq/least_squares.py

FitBenchmarking Documentation, Release 0.1.dev1

[PLOTTING]

colour_scale: 1.1, #fef0d9
1.33, #fdcc8a
1.75, #£c8d59
3, #e34a33
inf, #b30000

Comparison mode (comparison_mode)

This selects the mode for displaying values in the resulting table options are abs, rel, both:
* abs indicates that the absolute values should be displayed
» rel indicates that the values should all be relative to the best result
* both will show data in the form “abs (rel)”

Default is both

[PLOTTING]
comparison_mode: both

Table type (table_type)

This selects the types of tables to be produced in FitBenchmarking. Options are:
* acc indicates that the resulting table should contain the chi squared values for each of the minimizers.
* runtime indicates that the resulting table should contain the runtime values for each of the minimizers.

e compare indicates that the resulting table should contain both the chi squared value and runtime values for
each of the minimizers. The tables produced have the chi squared values on the top line of the cell and the
runtime on the bottom line of the cell.

* local_min indicates that the resulting table should return true if a local minimum was found, or false

T
otherwise. The value of llJIrITH for those parameters is also returned. The output looks like {bool}

(norm_value), and the co&ouring is red for false and cream for true.

Defaultis acc, runtime, compare, and local_min.

[PLOTTING]

table_type: acc
runtime
compare

local _min

Results directory (results_dir)

This is used to select where the output should be saved

Defaultis fitbenchmarking_results

[PLOTTING]
results_dir: fitbenchmarking_results

1.1. Table Of Contents 25

FitBenchmarking Documentation, Release 0.1.dev1

Logging Options

The logging section contains options to control how fitbenchmarking logs information.

Logging file name (£ile_name)

This specifies the file path to write the logs to.

Defaultis fitbenchmarking. log

[LOGGING]
file_name: fitbenchmarking.log

Logging append (append)

This specifies whether to log in append mode or not. If append mode is active, the log file will be extended with each
subsequent run, otherwise the log will be cleared after each run.

Default is False (yes/no can also be used)

[LOGGING]
append: no

Logging level (1evel)

This specifies the minimum level of logging to display on console during runtime. Options are (from most logging to
least):

* NOTSET

e DEBUG

e INFO

¢ WARNING
¢ ERROR

e CRITICAL

Default is INFO

[LOGGING]
level: INFO

Logging external output (external_output)

This selects the amount of information displayed from third-parties. There are 3 options:
* display: Print information from third-parties to the stdout stream during a run.
* log_only: Print information to the log file but not the stdout stream.
* debug: Do not intercept third-party use of output streams.

Defaultis log_only

26 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

[LOGGING]
append: log_only

The options file must be a . ini formatted file (see here). Some example files can be found in the examples folder
of the source, which is also available to download at Benchmark problems.

Problem Definition Files

In FitBenchmarking, problems can be defined using several file formats. The examples/benchmark_problems
directory holds a collection of these that can be used for reference.

More information on the supported formats can be found on the following pages.

CUTEst File Format

The CUTEst file format in FitBenchmarking is a slight modification of the SIF format. Specifically, the data points,
errors, and the number of variables must be defined in such a way to allow FitBenchmarking to access this data; see
below. In FitBenchmarking, all SIF files are assumed to be CUTEst problems.

These problems are a subset of the problems in the CUTEr/st Test Problem Set, which may have been adapted to work
with FitBenchmarking.

The SIF file format is very powerful, and CUTEst will work with arbitrary variable names, however for FitBench-
marking, these must match a set of expected variable names.

Modifications to the SIF format for FitBenchmarking problems

In order for FitBenchmarking to access the data, the SIF files must be written using the following conventions.

Defining Data

Data should be defined using the format:

RE X<idx> <val_x>
RE Y<idx> <val_y>
RE E<idx> <val_error>

where <idx> is the index of the data point, and <val_x>, <val_y>, and <val_error> are the values attributed
to it.

Usually, <idx> will range from 1 to <num_ x>, with that defined as:

IE M <num_x>

If <idx> does not start at 1, the following lines can be used to specify the range:

IE MLOWER <min_idx>
IE MUPPER <max_idx>

1.1. Table Of Contents 27

https://docs.python.org/3/library/configparser.html#supported-ini-file-structure
http://www.numerical.rl.ac.uk/lancelot/sif/sif.html
http://www.cuter.rl.ac.uk/Problems/mastsif.shtml

FitBenchmarking Documentation, Release 0.1.dev1

Defining Variables

For the free variables in functions, we use the convention:

IE N <num_vars>

This is used to tell FitBenchmarking how many degrees of freedom we need to fit. In some cases variables will be
vectors, and the number of degrees of freedom will be greater, most problems use NVEC as a convention to input the
number of vectors.

Native File Format

In FitBenchmarking, the native file format is used to read Mantid and SASView problems.

In this format, data is separated from the function. This allows running the same dataset against multiple different
models to assess which is the most appropriate.

An example of a native problem is:

FitBenchmark Problem#

software = 'Mantid'

name = 'HIFI 113856"'

description = 'An example of (full) detector calibration for the HIFI instrument'
input_file = 'HIFIgrouped_ 113856.txt'

function = 'name=FlatBackground,A0=0; name=DynamicKuboToyabe,BinWidth=0.
—050000000000000003,Asym=0.2,Delta=0.2,Field=0,Nu=0.1"

fit_ranges = {'x': [0.1, 16]}

This example shows the basic structure in which the file starts with a comment indicating it is a FitBenchmark problem
followed by key-value pairs. Available keys are described below:

software Either ‘Mantid’ or ‘SasView’ (case insensitive).

This defines whether to use Mantid or SasView to generate the model. The ‘Mantid’ software also supports
Mantid’s MultiFit functionality, which requires the parameters listed here to be defined slightly differently.
More information can be found in Native File Format (Mantid MultiFit).

name The name of the problem.

This will be used as a unique reference so should not match other names in the dataset. A sanitised version of
this name will also be used in filenames with commas stripped out and spaces replaced by underscores.

description A description of the dataset.
This is currently unused within FitBenchmarking, but can be useful for explaining problems.
input_file The name of a file containing the data to fit.

The file must be in a subdirectory named data_files, and should have the form:

header
x1 yl [el]
x2 y2 [e2]

Mantid uses the convention of # X Y E as the header and SASView uses the convention <X> <Y> <E>,
although neither of these are enforced. The error column is optional in this format.

28 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

function This defines the function that will be used as a model for the fitting.

Inside FitBenchmarking, this is passed on to the specified software and, as such, the format is specific to the
package we wish to use, as described below.

Mantid

A Mantid function consists of one or more base functions separated by a semicolon. This allows for a powerful
way of describing problems, which may have multiple components such as more than one Gaussian and a linear
background.

To use one of the base functions in Mantid, please see the list available here.

Note: Any non-standard arguments (e.g. ties, constraints, fixes, ...) will only work with Mantid fitting software.
Using other minimizers to fit these problems will result in the non-standard arguments being ignored.

SASView
SASView functions can be any of these.
fit_ranges This specifies the region to be fit.

It takes the form shown in the example, where the first number is the minimum in the range and the second is
the maximum.

Native File Format (Mantid MultiFit)

As part of the Mantid parsing we also offer limited support for Mantid’s MultiFit functionality.

Here we outline how to use Mantid’s MultiFit with FitBenchmarking, in which some options differ from the standard
Native File Format.

Warning: Due to the way Mantid uses ties (a central feature of MultiFit), MultiFit problems can only be used
with Mantid minimizers.

In this format, data is separated from the function. This allows running the same dataset against multiple different
models to assess which is the most appropriate.

An example of a multifit problem is:

FitBenchmark Problem

software = 'Mantid'

name = 'MUSR62260'

description = 'Calibration data for mu SR intrument. Run 62260."'

input_file = ['MUSR62260_bkwd.txt', '"MUSR62260_bottom.txt', "MUSR62260_fwd.txt",

— "MUSR62260_top.txt"']

function = 'name=FlatBackground,A0=0; name=GausOsc,A=0.2,Sigma=0.2,Frequency=1,Phi=0"
ties = ['fl.Sigma', 'fl.Frequency']

fit_ranges = [{'x': [0.1, 15.0]}, {'x': [0.1, 15.01}, {'x': [0.1, 15.01}, {'x': [0.1,,
—15.011}]

Below we outline the differences between this and the Native File Format.
software Must be Mantid.

name As in Native File Format.

description As in Native File Format.

input_file As in Native File Format, but you must pass in a list of data files (see above example).

1.1. Table Of Contents 29

https://docs.mantidproject.org/nightly/fitting/fitfunctions/categories/FitFunctions.html
http://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/models/index.html
https://docs.mantidproject.org/nightly/algorithms/Fit-v1.html?highlight=fit#multiple-fit

FitBenchmarking Documentation, Release 0.1.dev1

function As in Native File Format.
When fitting, this function will be used for each of the input_files given simultaneously.
ties This entry is used to define global variables by tieing a variable across input files.

Each string in the list should reference a parameter in the function using Mantid’s convention of £<i>.<name>
where i is the position of the function in the function string, and name is the global parameter.

For example to run a fit which has a shared background and peak height, the function and ties fields might look
like:

function="'name=LinearBackground, A0=0, Al=0; name=Gaussian, Height=0.01,
—PeakCentre=0.00037, Sigma=le-05'
ties=['f0.A0', 'f0.Al', 'fl.Height']

fit_ranges As in Native File Format.

NIST Format

The NIST file format is based on the nonlinear regression problems found at the NIST Standard Reference Database.
Documentation and background of these problems can be found here.

We note that FitBenchmarking recognizes the NIST file type by checking the first line of the file starts with # NIST/ITL
StRD.

Detecting problem file type

FitBenchmarking detects which parser to use in two ways:
 For the CUTEst file format we check that the extension of the data file is sif
* For native and NIST file formats we check the first line of the file
— # FitBenchmark Problem corresponds to the native format

— # NIST/ITL StRD corresponds to the NIST format

FitBenchmarking Tests

The tests for FitBenchmarking require pytest>=3. 6. We have split the tests into two categories:
* default: denotes tests involving pip installable software packages,

* all:in addition to default, also runs tests on external packages.

Unit tests

Each module directory in FitBenchmarking (e.g. controllers) contains a test folder which has the unit tests for
that module. One can run the tests for a module by:

pytest fitbenchmarking/<MODULE_DIR> --test-type <TEST_TYPE>

where <TEST_TYPE> is either default or all. If -—test-type argument is not given the defaultis all

30 Chapter 1. FitBenchmarking

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://www.itl.nist.gov/div898/strd/
https://www.itl.nist.gov/div898/strd/general/bkground.html

FitBenchmarking Documentation, Release 0.1.dev1

System tests

System tests can be found in the systests directory in FitBenchmarking. As with the unit tests, these can be run
via:

pytest fitbenchmarking/systests —--test-type <TEST_TYPE>

Warning: The files in the expected results subdirectory of the systests directory are generated to check
consistency in our automated tests via GitHub Actions. They might not pass on your local operating system due
to, for example, different software package versions being installed.

GitHub Actions tests

The scripts that are used for our automated tests via GitHub Actions are located in the ci folder. These give an
example of how to run both the unit and system tests within FitBenchmarking.

Known Issues

This page is used to detail any known issues or unexpected behaviour within the software.

Problem-Format/Software Combinations

When comparing minimizer options from one software package (e.g., comparing all scipy_Is minimizers), we are not
aware of any issues. However, the general problem of comparing minimizers from multiple software packages, and
with different problem-formats, on truely equal terms is harder to achieve.

The following list details all cases where we are aware of a possible bias:
 Using native FitBenchmarking problems with the Mantid software and fitting using Mantid.

With Mantid data, the function evaluation is slightly faster for Mantid minimizers than for all other minimizers.
You should account for this when interpreting the results obtained in this case.

« Using ties in native FitBenchmarking problems with the Mantid software.
This is not available for non-Mantid fitting software. In these cases, a warning will be generated.

In all cases, the stopping criterion of each minimizer is set to the default value. An experienced user can change this.

1.1.3 Extending FitBenchmarking Documentation

FitBenchmarking is designed to be easily extendable to add new features to the software. Below we outline instructions
for doing this.

Adding Fitting Problem Definition Types

The problem definition types we currently support are listed in the page Problem Definition Files.

To add a new fitting problem type, the parser name must be derived from the file to be parsed. For current file formats
by including it as the first line in the file. e.g # Fitbenchmark Problemor NIST/ITL StRD, or by checking
the file extension.

1.1. Table Of Contents 31

https://github.com/fitbenchmarking/fitbenchmarking/actions
https://github.com/fitbenchmarking/fitbenchmarking/actions

FitBenchmarking Documentation, Release 0.1.dev1

To add a new fitting problem definition type, complete the following steps:

1. Give the format a name (<format_name>). This should be a single word or string of alphanumeric characters,

and must be unique ignoring case.

2. Create a parser in the fitbenchmarking/parsing directory. This parser must satisfy the following:

¢ The filename should be of the form "<format_name>_parser.py"
» The parser must be a subclass of the base parser, Parser

* The parser must implement parse (self) method which takes only self and returns a populated
FittingProblem

Note: File opening and closing is handled automatically.

. If the format is unable to accommodate the current convention of starting with the <format_name>, you will

need to edit ParserFactory. This should be done in such a way that the type is inferred from the file.

. Create the files to test the new parser. Automated tests are run against the parsers in FitBenchmarking,

which work by using test files in fitbenchmarking/parsing/tests/<format_name>. In the
test_parsers.generate_test_cases () function, one needs to add the new parser’s name to the
variable format s, based on whether or not the parser is pip installable. There are 2 types of test files needed:

* Generic tests: fitbenchmarking/parsing/tests/expected/ contains two files, basic.
json and start_end_x.json. You must write two input files in the new file format, which will
be parsed using the new parser to check that the entries in the generated fitting problem match the val-
ues expected. These must be called basic.<ext>, start_end_x.<ext>, where <ext> is the
extension of the new file format, and they must be placed in fitbenchmarking/parsing/tests/
<format_name>/.

* Function tests: A file named function_evaluations.json must also be provided in
fitbenchmarking/parsing/tests/<format_name>/, which tests that the function evaluation
behaves as expected. This file must be in json format and contain a string of the form:

{"file_namel": [[[x1l,x12,...,x1ln], [paramll, paraml2,...,paramlm], [resultll,
—resultl2,...,resultln]],
[[x21,%x22,...,%x2n], [param2l, param22,...,param2m], [result2l,
—result22,...,result2n]],
']I
{"file_name2": [...],
-}

The test will then parse the files £ile_name<x> in turn evaluate the function at the given xx values and
params. If the result is not suitably close to the specified value the test will fail.

o Integration tests: Add an example to the directory fitbenchmarking/mock_problems/
all_parser_set/. This will be used to verify that the problem can be run by scipy, and that accuracy
results do not change unexpectedly in future updates. If the software used for the new parser is pip-
installable, and the installation is done via FitBenchmarking’s setup . py, then add the same example to
fitbenchmarking/mock_problems/default_parsers/.

As part of this, the systests/expected_results/all_parsers.txt file, and if neccessary
the systests/expected_results/default_parsers.txt file, will need to be updated.
This is done by running the systests:

pytest fitbenchmarking/systests

and then checking that the only difference between the results table and the expected value is the new
problem, and updating the expected file with the result.

32

Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

S.

Verify that your tests have been found and are successful by running pyfest -vv fitbenchmark-
ing/parsing/tests/test_parsers.py

Adding new Jacobians

This section describes how to add further methods to approximate the Jacobian within FitBenchmarking

In order to add a new Jacobian evaluation method, you will need to:

1.

Give the Jacobian a name using the following convention < jac_method> and <num_method>. An example
could be scipy_fd for <jac_method> and 2point for <num_method> which would call the SciPy’s
2-point finite difference approximation.

Create fitbenchmarking/jacobian/<jac_method>_<num_method>_jacobian.py, which
contains a new subclass of Jacobian. Then implement the method eval (), which evaluates the Jacobian.
The numerical method is set sequentially within 1oop_over_jacobians () by using the method attribute
of the class.

Document the available Jacobians by:

updating the docs for Fitting Options

updating options via FitBenchmarking Options and Adding new Options
updating any example files in the example directory

Create tests for the Jacobian evaluation in fitbenchmarking/jacobian/tests/test_jacobians.
py.

Adding Fitting Software

Controllers are used to interface FitBenchmarking with the various fitting packages. Controllers are responsible for
converting the problem into a format that the fitting software can use, and converting the result back to a standard-
ised format (numpy arrays). As well as this, the controller must be written so that the fitting is separated from the
preparation wherever possible in order to give accurate timings for the fitting. Supported controllers are found in
fitbenchmarking/controllers/.

In order to add a new controller, you will need to:

1.
2.

Give the software a name <software_name>. This will be used by users when selecting this software.

Create fitbenchmarking/controllers/<software_name>_controller.py which contains a
new subclass of Controller. This should implement four functions:

Controller._ _init__ ()
Initialise anything that is needed specifically for the software, do any work that can be done without knowl-
edge of the minimizer to use, or function to fit, and call super (<software_name>Controller,
self).__init__ (problem) (the base class’s __init___ implementation). In this function, you
must initialize the a dictionary, self.algorithm_type, such that the keys are given by:

all - all minimizers

1s - least-squares fitting algorithms

deriv_free - derivative free algorithms (these are algorithms that cannot use derivative informa-
tion. For example, the Simplex method in Mantid does not require Jacobians, and so is derivative
free. However, lm-scipy—-no-jacin scipy_1ls is designed to use derivatives, but calculates an
approximation internally if one is not supplied.)

general - minimizers which solve a generic min f{x).

1.1. Table Of Contents 33

FitBenchmarking Documentation, Release 0.1.dev1

The values of the dictionary are given as a list of minimizers for that specific controller that fit into each
of the above categories. See for example the GSL controller.

Parameters problem (FittingProblem)— The parsed problem

* Controller.setup ()
Setup the specifics of the fitting.

Anything needed for “fit” that can only be done after knowing the minimizer to use and the function to fit
should be done here. Any variables needed should be saved to self (as class attributes).

* Controller.fit ()
Run the fitting.

This will be timed so should include only what is needed to fit the data.

* Controller.cleanup ()
Retrieve the result as a numpy array and store results.

Convert the fitted parameters into a numpy array, saved to self.final_params, and store the error
flagas self.flag.

The flag corresponds to the following messages:

flag()

0: Successfully converged
1: Software reported maximum number of iterations exceeded
2: Software run but didn’t converge to solution

3: Software raised an exception
3. Add the new software to the default options, following the instructions in Adding new Options.

Your new software is now fully hooked in with FitBenchmarking, and you can compare it with the current software.
You are encouraged to contribute this to the repository so that other can use this package. To do this need to follow
our Coding Standards and our Git Workflow, and you’ll also need to

4. Document the available minimizers (see Fitting Options, Minimizer Options). Note: make sure that you use
<software_name> in these places so that the software links in the HTML tables link correctly to the docu-
mentation. Add the software to examples/all_software.ini.

5. Create tests for the software in fitbenchmarking/controllers/tests/test_controllers.py.
If the package is pip installable then add the tests to the DefaultControllerTests class and if not add to
the ExternalControllerTests class. Unless the new controller is more complicated than the currently
available controllers, this can be done by following the example of the others.

6. If pip installable add to install_requires in setup.py otherwise document the installation procedure
in Installing External Software. Update the FullInstall Docker Container — the main developers will help
you with this step.

Note: For ease of maintenance, please add new controllers to a list of software in alphabetical order.

The FittingProblem and Jacobian classes

When adding new minimizers, you will find it helpful to make use of the following members of the
FittingProblem and subclasses of Jacobian classes:

34 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

class fitbenchmarking. jacobian.base_Jjacobian.Jacobian (problem)
Base class for Jacobian.

eval (params, func=None, **kwargs)
Evaluates Jacobian

Parameters
* params (11ist)— The parameter values to find the Jacobian at

e func (Callable, optional)— Function to find the Jacobian for, defaults to prob-
lem.eval r

Returns Approximation of the Jacobian
Return type numpy array

class fitbenchmarking.parsing.fitting problem.FittingProblem (options)
Definition of a fitting problem, which will be populated by a parser from a problem definition file.

This defines a fitting problem where, given a set of n data points (z;,y;), associated errors e;, and a model
function f(z,p), we find the optimal parameters in the least-squares sense by solving:

= (i — flap)\
HEH;(€i)

where p is a vector of length m, and we start from a given intial guess for the optimal parameters.

data_e = None
numpy array The errors

data_x = None
numpy array The x-data

data_y = None
numpy array The y-data

eval_f (params, x=None)
Function evaluation method

Parameters

* params (1ist)— parameter value(s)

* x (numpy array) - x data values or None, if None this uses self.data_x
Returns y data values evaluated from the function of the problem
Return type numpy array

eval_r (params, x=None, y=None, e=None)
Calculate residuals and weight them if using errors

Parameters

* params (11ist)— The parameters to calculate residuals for

* x (numpy array, optional)- x data points, defaults to self.data_x

* y(numpy array, optional)-y data points, defaults to self.data_y

* e (numpy array, optional)- error ateach data point, defaults to self.data_e
Returns The residuals for the datapoints at the given parameters

Return type numpy array

1.1. Table Of Contents 35

FitBenchmarking Documentation, Release 0.1.dev1

eval_r norm (params, x=None, y=None, e=None)
Evaluate the square of the L2 norm of the residuals

Parameters

* params (11ist)— The parameters to calculate residuals for

* x (numpy array, optional)— X datapoints, defaults to self.data_x

* y(numpy array, optional)-y data points, defaults to self.data_y

* e (numpy array, optional)- error ateach data point, defaults to self.data_e
Returns The sum of squares of residuals for the datapoints at the given parameters
Return type numpy array

starting values = None
list of dict Starting values of the fitting parameters

e.g. [{pl_name: pl_vall, p2_name: p2_vall, ...}, {pl_name: pl_valz,
N

Adding new Options
Default options are set in Options. These can be changed using an .ini formatted file (see here). FitBenchmarking
Options gives examples of how this is currently implemented in FitBenchmarking.

To add a new option to one of the five sections FITTING, MINIMIZERS, PLOTTING and LOGGING, follow the
steps below. We’ll illustrate the steps using <SECTION>, which could be any of the sections above.

1. Amend the dictionary DEFAULT_<SECTION> in Options to include any new default options.

2. If the option amended is to be checked for validity, add accepted option values to the VALID_<SECTION>
dictionary in Options.

3. Using the read value () function, add your new option to the class, following the examples already in
Options. The syntax of this function is:

Options.read_value (func, option)
Helper function which loads in the value

Parameters
* func (callable) - configparser function
* option (str) - option to be read for file
Returns value of the option
Return type list/str/int/bool
4. Add tests in the following way:

* Each of the sections has it’s own test file, for example, test_option_fitting has tests for the
FITTING section.

¢ Add default tests to the class called <SECTION>OptionTests.

¢ Add user defined tests to the class called User<SECTION>OptionTests. These should check that the
user added option is valid and raise an Opt ionsError if not.

5. Add relevant documentation for the new option in FitBenchmarking Options.

Adding new Sections is also possible. To do this you’ll need to extend VALID_SECTIONS with the new section, and
follow the same structure as the other SECTIONS.

36 Chapter 1. FitBenchmarking

https://docs.python.org/3/library/configparser.html#supported-ini-file-structure

FitBenchmarking Documentation, Release 0.1.dev1

Amending FitBenchmarking Outputs

Here we describe how to add ways of displaying results obtained by FitBenchmarking.

Adding further Tables

The tables that are currently supported are listed in FitBenchmarking Output. In order to add a new table, you will
need to:

1.

Give the table a name <table_name>. This will be used by users when selecting this output from FitBench-
marking.

Create fitbenchmarking/results_processing/<table_name>_table.py which contains a
new subclass of Table. The main functions to change are:

* Table.get_values (results_dict)
Gets the main values to be reported in the tables
Parameters results_dict (dictionary) — dictionary containing results where the
keys are the problem sets and the values are lists of results objects
Returns tuple of dictionaries which contain the main values in the tables
Return type tuple

* Table.display_str (results)

Function which converts the results from get_values () into a string respresentation to be used
in the tables. Base class implementation takes the absolute and relative values and uses self.
output_string_type as a template for the string format. This can be overwritten to adequately
display the results.

Parameters results (tuple) — tuple containing absolute and relative values

Returns dictionary containing the string representation of the values in the table.

Return type dict

Additional functions to be changed are:

* Table.get_colour (results)
Converts the result from get__values () into the HTML colours used in the tables. The base class
implementation, for example, uses the relative results and colour_scale within Options.
Parameters results (tuple) — tuple containing absolute and relative values
Returns dictionary containing HTML colours for the table
Return type dict

e Table.colour_highlight (value, colour)
Takes the HTML colour values from get_colour () and maps it over the HTML table using the
Pandas style mapper.
Parameters
— value (pandas.core.series.Series)— Row data from the pandas array
— colour (dict) — dictionary containing error codes from the minimizers
Returns list of HTML colours
Return type list

. Extend the table_type option in PLOTTING following the instructions in Adding new Options.

. Document the new table class is by setting the docstring to be the description of the table, and add to FirBench-

marking Output.

. Create tests for the table in fitbenchmarking/results_processing/tests/test_tables.py.

This is done by generating, ahead of time using the results problems constructed in fitbenchmarking/
results_processing/tests/test_tables.generate_mock_results, both a HTML and

1.1.

Table Of Contents 37

FitBenchmarking Documentation, Release 0.1.dev1

text table output as the expected result and adding the new table name to the global variable
SORTED_TABLE_NAMES. This will automatically run the comparison tests for the tables.

HTML/CSS Templates

In FitBenchmarking, templates are used to generate all html output files, and can be found in the fitbenchmark-
ing/templates directory.

HTML Templates

HTML templates allow for easily adaptable outputs. In the simple case of rearranging the page or making static
changes (changes that don’t vary with results), this can be done by editing the template, and it will appear in every
subsequent HTML page.

For more complicated changes such as adding information that is page dependent, we use jinja. Jinja allows code to
be added to templates which can contain conditional blocks, replicated blocks, or substutions for values from python.

Changes to what information is displayed in the page will usually involve editing the python source code to ensure
you pass the approprate values to jinja. In practice the amount of effort required to do this can range from one line of
code to many depending on the object to be added.

CSS Templates

The CSS files contained in the templates directory are used to format the HTML pages.

If you wish to change the style of the output results (e.g. to match a website), this is where they can be changed.

1.1.4 FitBenchmarking Contributor Documentation

Thank you for being a contributor to the FitBenchmarking project. Here you will find all you need in order to get
started.

Coding Standards
All code submitted must meet certain standards, outlined below, before it can be merged into the master branch. It

is the contributor’s job to ensure that the following is satisfied, and the reviewer’s role to check that these guidelines
have been followed.

The workflow to be used for submitting new code/issues is described in Git Workflow.
Linting

All pull requests should be PEP 8 compliant. We suggest running code through flake8 and pylint before submitting to
check for this.

Documentation

Any new code will be accepted only if the documentation, written in sphinx and found in docs/, has been updated
accordingly, and the docstrings in the code have been updated where neccessary.

38 Chapter 1. FitBenchmarking

https://jinja.palletsprojects.com/en/2.11.x/
https://www.python.org/dev/peps/pep-0008/
https://flake8.pycqa.org/en/latest/
https://www.pylint.org/
https://www.sphinx-doc.org/en/master/

FitBenchmarking Documentation, Release 0.1.dev1

Testing

All tests should pass before submitting code. Tests are written using pytest.
The following should be checked before any code is merged:

* Function: Does the change do what it’s supposed to?

» Tests: Does it pass? Is there adequate coverage for new code?

* Style: Is the coding style consistent? Is anything overly confusing?

* Documentation: Is there a suitable change to documentation for this change?

Logging

Code should use the logging in uti1s. 1og. This uses Python’s built in logging module, and should be used in place
of any print statements to ensure that persistent logs are kept after runs.

Git Workflow

Issues

All new work should start with a new GitHub issue being filed. This should clearly explain what the change to the
code will do. There are templates for Bug report, Documentation, Feature request and Test issues on GitHub, and you
can also open a blank issue if none of these work.

If issues help meet a piece of work agreed with our funders, it is linked to the appropriate Milestone in GitHub.

Adding new code

The first step in adding new code is to create a branch, where the work will be done. Branches should be named
according to the convention <nnn>-description_of_work, where <nnn> is the issue number.

Please ensure our Coding Standards are adhered to throughout the branch.

When you think your new code is ready to be merged into the codebase, you should open a pull request to master. The
description should contain the words Fixes #<nnn>, where <nnn> is the issue number; this will ensure the issue is
closed when the code is merged into master. At this point the automated tests will trigger, and you can see if the code
passes on an independent system.

Sometimes it is desirable to open a pull request when the code is not quite ready to be merged. This is a good idea,
for example, if you want to get an early opinion on a coding descision. If this is the case, you should mark the pull
request as a draft on GitHub.

Once the work is ready to be reviewed, you may want to assign a reviewer, if you think someone would be well suited
to review this change. It is worth messaging them on, for example, Slack, as well as requesting their review on GitHub.

Release branches

Branches named release-* are protected branches; code must be approved by a reviewer before being added to them,
and automated tests will be run on pull requests to these branches. If code is to be included in the release, it must be
pulled into this branch from master.

1.1. Table Of Contents 39

https://docs.pytest.org/en/stable/
https://docs.python.org/3.8/library/logging.html
https://github.com/fitbenchmarking/fitbenchmarking/issues/new/choose
https://github.com/fitbenchmarking/fitbenchmarking/milestones

FitBenchmarking Documentation, Release 0.1.dev1

Release branches should have the format release-major.minor.x, starting from release-0.1.x. When the code is re-
leased, we will tag that commit with a version number v0.1.0. Any hotfixes will increment x by one, and a new tag
will be created accordingly. If at some point we don’t want to provide hot-fixes to a given minor release, then the
corresponding release branch may be deleted.

All changes must be initially merged into master. There is a backport-candidate label, which must be put on pull
requests that in addition must be merged into the release branch.

The recommended mechanism for merging PRs lablelled with backport-candidate into master is to use the Squash
and merge commit option:

|
.Eo ° Changes approved Show all reviewers

1 approving review by reviewers with write access. Learn more,

' 1approval W

° All checks have passed Show all checks

3 successful checks

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request A@l You can also open this in GitHub Desktop or view command line instructions.

| v Createa merge commit

L All commits from this branch will be added to the
base branch via a merge commit. = O & = = @ [;5 T

Squash and merge

The 22 commits from this branch will be
combined into one commit in the base branch.

Rebase and merge
The 22 commits from this branch will be rebased

ting them. (M}

and added to the base branch.

@ Close pull request

After such a PR (with label backport-candidate) has been merged into master, it must then subsequently be merged
into the release branch as soon as possible. It is the responsibility of the person merging such PRs to also perform this
merge into the release branch.

This can be done using git cherry pick:

git checkout release-x.x.x
git cherry-pick -x <commit-id>
git push

If you didn’t do a squash merge, you will have to cherry pick each commit in the PR that this being backported
separately.

If you encounter problems with cherry picking into release branch please don’t hesitate to speak to an experienced
member of the FitBenchmarking team.

40 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Creating a release

In order to create a new release for FitBenchmarking, there are a few manual steps. These have been streamlined as
much as possible.

First checkout the branch to create the release from. Releases should only be made from a release-x-x branch, not a
development branch or master.

From the root of the repo run the “ci/prep_and_tag_release.sh” script with the new version number. The version
number will be rejected if it is not of the expected form. We expect a “v” followed by the major, minor, and patch
numbers, and an optional numbered label to mark the type of release.

Possible labels are:
* -beta (release for testing)
¢ -rc (release candidate)

This script will create a new commit with the docs and testing links updated, tag it, and revert the change in a second
commit so that the links point back to the latest versions.

These commits will need to be pushed to github.

Finally, you will need to create a release on github. This can be done by navigating to the releases page, selecting new
release and typing in the tag that was given to the release (it should tell you the tag exists at this point!).

For example, For a first beta version of release 0.1.0, one would run:

git checkout release-0.1.x
ci/prep_and_tag_release.sh v0.1.0-betal
git push origin v0.1.0-betal

<And make the release on GitHub>

Repository Structure

At the root of the repository there are six directories:
* build
e ci
* Docker
* docs
* examples

* fitbenchmarking

Build (build)

This directory contains scripts to allow for installing packages such as Mantid through setuptools.

Cl (ci)

We use GitHub Actions to run our Continuous Integration tests. The specific tests run are defined in a series of Bash
scripts, which are stored in this folder.

1.1. Table Of Contents 41

https://github.com/fitbenchmarking/fitbenchmarking/actions

FitBenchmarking Documentation, Release 0.1.dev1

Docker (Docker)

The continuous integration process on Github Actions currently run on a Docker container, and this directory holds
the Dockerfiles. The Docker containers are hosted on Dockerhub.

BasicInstall holds the Dockerfile that is pushed to the repository fitbenchmarking/
fitbenchmarking-deps, the lastest of which should have the tag 1latest. This contains a basic Ubuntu
install, with just the minimal infrastructure needed to run the tests.

FullInstall holds the Dockerfile that is pushed to the repository fitbenchmarking/
fitbenchmarking-extras, the lastest of which should have the tag latest. This is built on top of the
basic container, and includes optional third party software that FitBenchmarking can work with.

The versions on Docker Hub can be updated from a connected account by issuing the commands:

docker build --tag fitbenchmarking-<type>:<tag>
docker tag fitbenchmarking-<type>:<tag> fitbenchmarking/fitbenchmarking-<type>:<tag>
docker push fitbenchmarking/fitbenchmarking-<type>:<tag>

where <type> is, e.g., deps or extras, and <tag> is, e.g., Llatest.

Documentation (docs)

The documentation for FitBenchmarking is stored in this folder under source. A local copy of the documentation
can be build using make html in the build directory.

Examples (examples)

Examples is used to store sample problem files and options files.

A collection of problem files can be found organised into datasets within the examples/benchmark_problems/
directory.

An options template file and a prewritten options file to run a full set of minimizers is also made available in the
examples/ directory.

FitBenchmarking Package (fitbenchmarking)

The main FitBenchmarking package is split across several directories with the intention that it is easily extensible. The
majority of these directories are source code, with exceptions being Templates, Mock Problems, and System Tests.

Each file that contains source code will have a directory inside it called test s, which contains all of the tests for that
section of the code.

Benchmark Problems (benchmark_problems)

This is a copy of the NIST benchmark problems from examples/benchmark_problems. These are the default problems
that are run if no problem is passed to the fitbenchmarking command, and is copied here so that it is distributed
with the package when installed using, say, pip.

42 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

CLI (c1i)

The CLI directory is used to define all of the entry points into the software. Currently this is just the main fitbench-
marking command.

Controllers (controllers)

In FitBenchmarking, controllers are used to interface with third party minimizers.

The controllers directory holds a base controller class (Cont roller) and all its subclasses, each of which of which
interfaces with a different fitting package. The controllers currently implemented are described in Fifting Options and
Minimizer Options.

New controllers can be added by following the instructions in Adding Fitting Software.

Core (core)

This directory holds all code central to FitBenchmarking. For example, this manages calling the correct parser and
controller, as well as compiling the results into a data object.

Jacobian (jacobian)

This directory holds the Jacobian class, and subclasses, which are used by the controllers to approximate deriva-
tives. Currenlty available options are described in Fitting Options, and new numerical Jacobians can be added by
following the instructions in Adding new Jacobians.

Mock Problems (mock_problems)

The mock problems are used in some tests where full problem files are required. These are here so that the examples
can be moved without breaking the tests.

Parsing (parsing)

The parsers read raw data into a format that FitBenchmarking can use. This directory holds a base parser, Parser and
all its subclasses. Each subclass implements a parser for a specific file format. Information about existing parsers can
be found in Problem Definition Files, and see Adding Fitting Problem Definition Types for instructions on extending
these.

Results Processing (results_processing)

All files that are used to generate output are stored here. This includes index pages, text/html tables, plots, and support
pages. Information about the tables we provide can be found in FitBenchmarking Output, and instructions on how to
add further tables and change the formatting of the displayed information can be found in Amending FitBenchmarking
Outputs.

1.1. Table Of Contents 43

FitBenchmarking Documentation, Release 0.1.dev1

System Tests (systests)

FitBenchmarking runs regression tests to check that the accuracy results do not change with updates to the code. These
tests run fitbenchmarking against a subset of problems (in subdirectories of /fitbenchmarking/mock_problems/), and
compares the text output with that stored in /fitbenchmarking/systests/expected_results/.

Templates (templates)

Files in Templates are used to create the resulting html pages, and are a combination of css, html, and python files.
The python files in this directory are scripts to update the css and html assets. Instructions on updating these can be
found in HTML/CSS Templates.

Utils (utils)

This directory contains utility functions that do not fit into the above sections. This includes the Opt ions class (see
Adding new Options to extend) and FittingResult class, as well as functions for logging and directory creation.

fitbenchmarking package

Subpackages

fitbenchmarking.cli package

Submodules
fitbenchmarking.cli.exception_handler module

This file holds an exception handler decorator that should wrap all cli functions to provide cleaner output.

fitbenchmarking.cli.exception_handler.exception_handler (f)
Decorator to simplify handling exceptions within FitBenchmarking This will strip off any ‘debug’ inputs.

Parameters £ (python function)— The function to wrap

fitbenchmarking.cli.main module

This is the main entry point into the FitBenchmarking software package. For more information on usage type fitbench-
marking —help or for more general information, see the online docs at docs.fitbenchmarking.com.

fitbenchmarking.cli.main.get_parser ()
Creates and returns a parser for the args.

Returns configured argument parser
Return type argparse.ArgParser

fitbenchmarking.cli.main.main ()
Entry point to be exposed as the fithenchmarking command.

fitbenchmarking.cli.main.zrun (problem_sets, options_file=", debug=False)
Run benchmarking for the problems sets and options file given. Opens a webbrowser to the results_index after
fitting.

44 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

Parameters
* problem_sets (1ist of str)- The paths to directories containing problem_sets
* options_file (str, optional)- The path to an options file, defaults to

* debug (bool) — Enable debugging output

Module contents

fitbenchmarking.controllers package

Submodules

fitbenchmarking.controllers.base_controller module

Implements the base class for the fitting software controllers.

class fitbenchmarking.controllers.base_controller.Controller (problem)

Bases: object

Base class for all fitting software controllers. These controllers are intended to be the only interface into the
fitting software, and should do so by implementing the abstract classes defined here.

VALID FLAGS = [0, 1, 2, 3]

check_ attributes ()
A helper function which checks all required attributes are set in software controllers

cleanup ()
Retrieve the result as a numpy array and store results.

Convert the fitted parameters into a numpy array, saved to self.final params, and store the error
flag as self.flag.

The flag corresponds to the following messages:

flag ()

0: Successfully converged

1: Software reported maximum number of iterations exceeded
2: Software run but didn’t converge to solution

3: Software raised an exception

eval_chisq (params, x=None, y=None, e=None)
Computes the chisq value

Parameters

* params (11ist)— The parameters to calculate residuals for

* x (numpy array, optional)- x data points, defaults to self.data_x

* y(numpy array, optional)-y datapoints, defaults to self.data_y

* e (numpy array, optional)- error ateach data point, defaults to self.data_e
Returns The sum of squares of residuals for the datapoints at the given parameters

Return type numpy array

1.1.

Table Of Contents 45

FitBenchmarking Documentation, Release 0.1.dev1

fit ()
Run the fitting.

This will be timed so should include only what is needed to fit the data.

flag

0: Successfully converged
1: Software reported maximum number of iterations exceeded
2: Software run but didn’t converge to solution

3: Software raised an exception

prepare ()
Check that function and minimizer have been set. If both have been set, run self.setup().

setup ()
Setup the specifics of the fitting.

Anything needed for “fit” that can only be done after knowing the minimizer to use and the function to fit
should be done here. Any variables needed should be saved to self (as class attributes).

validate_minimizer (minimizer, algorithm_type)
Helper function which checks that the selected minimizer from the options (options.minimizer) exists and
whether the minimizer is in self.algorithm_check[options.algorithm_type] (this is a list set in the con-
troller)

Parameters
* minimizer (str) — string of minimizers selected from the options

* algorithm_ type (str) - the algorithm type selected from the options

fitbenchmarking.controllers.bumps_controller module

Implements a controller for the Bumps fitting software.

class fitbenchmarking.controllers.bumps_controller.BumpsController (problem)
Bases: fitbenchmarking.controllers.base controller.Controller

Controller for the Bumps fitting software.
Sasview requires a model to fit. Setup creates a model with the correct function.

cleanup ()
Convert the result to a numpy array and populate the variables results will be read from.

fit ()
Run problem with Bumps.

setup ()
Setup problem ready to run with Bumps.

Creates a FitProblem for calling in the fit() function of Bumps

fitbenchmarking.controllers.controller_factory module

This file contains a factory implementation for the controllers. This is used to manage the imports and reduce effort in
adding new controllers.

46 Chapter 1. FitBenchmarking

FitBenchmarking Documentation, Release 0.1.dev1

class fitbenchmarking.controllers.controller_ factory.ControllerFactory
Bases: object

A factory for creating software controllers. This has the capability to select the correct controller, import it, and
generate an instance of it. Controllers generated from this must be a subclass of base_controller.Controller

static create_controller (software)
Create a controller that matches the required software.

Parameters software (string)— The name of the software to create a controller for
Returns Controller class for the problem

Return type fitbenchmarking.fitting.base_controller.Controller subclass

fitbenchmarking.controllers.dfo_controller module

Implements a controller for DFO-GN http://people.maths.ox.ac.uk/robertsl/dfogn/

class fitbenchmarking.controllers.dfo_controller.DFOController (problem)
Bases: fitbenchmarking.controllers.base_controller.Controller

Controller for the DFO-{GN/LS} fitting software.

cleanup ()
Convert the result to a numpy array and populate the variables results will be read from.

fit ()
Run problem with DFO.

setup ()
Setup for DFO

fitbenchmarking.controllers.gsl_controller module

Implements a controller for GSL https://www.gnu.org/software/gsl/ using the pyGSL python interface https://
sourceforge.net/projects/pygsl/

class fitbenchmarking.controllers.gsl_controller.GSLController (problem)
Bases: fitbenchmarking.controllers.base controller.Controller

Controller for the GSL fitting software

cleanup ()
Convert the result to a numpy array and populate the variables results will be read from

fit ()
Run problem with GSL

setup ()
Setup for GSL

fitbenchmarking.controllers.mantid_controller module

Implements a controller for the Mantid fitting software.

class fitbenchmarking.controllers.mantid_controller.MantidController (problem)
Bases: fitbenchmarking.controllers.base controller.Controller

1.1. Table Of Contents 47

http://people.maths.ox.ac.uk/robertsl/dfogn/
https://www.gnu.org/software/gsl/
https://sourceforge.net/projects/pygsl/
https://sourceforge.net/projects/pygsl/

FitBenchmarking Documentation, Release 0.1.dev1

Controller for the Mantid fitting software.
Mantid requires subscribing a custom function in a predefined format, so this controller creates that in setup.

cleanup ()
Convert the result to a numpy array and populate the variables results will be read from.

eval_chisq (params, x=None, y=None, e=None)
Computes the chisq value. If multi-fit inputs will be lists and this will return a list of chi squared of
params[i], x[i], y[i], and e[i].

Parameters

e params (list of float or list of list of float)- The parameters to
calculate residuals for

* X (numpy array or list of numpy arrays, optional) — x data points,
defaults to self.data_x

* vy (numpy array or list of numpy arrays, optional) —y data points,
defaults to self.data_y

* e (numpy array or list of numpy arrays, optional) — error at each
data point, defaults to self.data_e

Returns The sum of squares of residuals for the datapoints at the given parameters
R